N

MICROCHIP

dsPI C30F/33F Programmer’s

Reference M anual
High-Performance

Digital Signal Controllers

© 2005 Microchip Technology Inc. Preliminary DS70157B

Note the following details of the code protection feature on Microchip devices:

. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,
RELATED TO THE INFORMATION, INCLUDING BUT NOT
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,
MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and
its use. Use of Microchip’s products as critical components in
life support systems is not authorized except with express
written approval by Microchip. No licenses are conveyed,
implicitly or otherwise, under any Microchip intellectual property
rights.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

= I1S0/TS 16949:2002 —

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEeLOQ, microlD, MPLAB, PIC, PICmicro, PICSTART,
PRO MATE, PowerSmart, rfPIC, and SmartShunt are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,
PICMASTER, SEEVAL, SmartSensor and The Embedded
Control Solutions Company are registered trademarks of

Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM,
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial
Programming, ICSP, ICEPIC, Linear Active Thermistor,
MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM,
PICDEM.net, PICLAB, PICtail, PowerCal, PowerlInfo,
PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode,
Smart Serial, SmartTel, Total Endurance and WiperLock are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2005, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

f‘} Printed on recycled paper.

Microchip received ISO/TS-16949:2002 quality system certification for
its worldwide headquarters, design and wafer fabrication facilities in
Chandler and Tempe, Arizona and Mountain View, California in
October 2003. The Company’s quality system processes and
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMSs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS70157B-page ii

Preliminary

© 2005 Microchip Technology Inc.

O

MICROCHIP
Table of Contents
PAGE
SECTION 1. INTRODUCTION 1-1
{10 [0 ox 110] o IR SO STUPPUPRUPPRRPRN 1-2
= L TU - @] o] =Tt 1Y PSP 1-2
DY =] (o] o g L= a1 AT U] o] o Lo] A RO RPRP 1-2
Style and SYMDBOI CONVENLIONS ... ittt e e e et et e e e st e e e e e e s anteeeaeaannseeeeeeanneneeeeesannnns 1-3
INSTIUCLION SEE SYMDBOISttt ettt e oo eat et e e e e et e e e e e e e anee e e e e e e e aeeeeeeannbeeeaeannneaeeens 1-4
R LC]E= 1=To I Do oW1 1T o€ PP RTR 1-5
SECTION 2. PROGRAMMER’S MODEL 2-1
ASPIC30F/33F OVEIVIEW ettt ettt ettt etttk ettt e e e ekt e bttt e ek bt e e eht et e eab et e aab b e e e st e e e smbee e e nbeeesnneeennneas 2-2
Programmer’s IMOOE ...ttt e oottt e e oo eat et e e e e bttt e e s e e mbee e e e e e e naeeeeeeannnbeeeaeannnnaeeens 2-3
SECTION 3. INSTRUCTION SET OVERVIEW 3-1
{10 [0 ox 110] o IR SO STUPPUPRUPPRRPRN 3-2
INSEFUCHION SEE OVEIVIEW ...ttt ettt ettt ettt e bt a e e et e e e be e e e she e e e eb b e e e anb et e ab e e e anbbeesnnee s nbbeeean 3-2
INStruction Set SUMMAIY TADIESooiiiiiiiiiie et e et e e sttt e e e s e eaeeasrteeeeeesnnsbeeeas 3-3
SECTION 4. INSTRUCTION SET DETAILS 4-1
D=1 r= W o [0 | =Tt [To 1Y, (o Lo L= PP RR 4-2
Program AdAreSSING MOUESccoiiiiiiieiiii et e e e ettt e e e e st ee e e s s ta e e e e e s snbaeeeessastsaeeeeeeastaeeeeesannres 4-11
INSEFUCHION STAIISeeeiiiitee ittt ettt e e e bt e e sh bt e e eh bt e e st et e s b e e e e bb e s antne e naneas 4-12
23V (@] o 1] = 11 o] LSOO PRPPPRRRNS 4-13
VAV o] (o MY o)V = @] 1T =i o] o PSSP RRPTPR 4-16
UsiNg 10-bit Literal OPEraNASuiiiiiiiiiiie ettt ettt e e e e ettt e e e e eatbeeeaaeeabbeeeaaeeaassseeasaaansseeeeasaannes 4-19
Software Stack Pointer and Frame POINTET ...ttt e et e e e e e e e ee e e anees 4-20
Conditional BranCh INSIIUCHIONSuuiiiiiiiiiiiiiii ettt ettt sttt et e et e e e e st e ebbe e s sieeeeanneeenaes 4-25
F A -1 (L3 = | S PP OPPPRPPIN 4-26
Assigned WOorking REQISIEI USAQTEcciuuiiiiiiiiiiiii ettt ettt e e st e e e s st e e e et ee e e e e e antbe e e e e asntbaeeeessnsbaeeas 4-27
DSP DAA FOIMMALSeeeeiiiiiiiiieiie ettt et e e e e e e e e e e e e e s e s e h bt bbbt bt ettt ee e e e eeeaeeeeaesaasaaaasnnnbnbebebeneeeeeaeaenns 4-30
ACCUMUIBEOT USBOE ...eieeeiieiiiiie ettt ettt ettt e ettt e e e ettt e e e e e s aeeee e e e natbee e e e emntbeeee e e emtbeeeeaeeeannnseaae e aannnneas 4-32
ACCUMUIBEOT ACCESS .. iiiiteie e ettt e ettt et e e e e ettt et e e e et et e e ee e e aeeeeeeeaamaseeeea e o nbbe e e e e e nsaeeeaeeannseeeeeeannsseaaeessnsnneenn 4-33
DSP MAC INSITUCTIONS ...eiieiitiieiiie ettt ettt ettt ettt e kb e e aa e e sab e e e bt e e e e sb e e e eb bt e e eb b e e e s mbe e e nnbee e e bbeeeantee e nanees 4-33
DSP ACCUMUIALOT INSITUCHIONS ...eiiiiiiieitie ettt ettt sttt e et e st e e e eb e e e eabb e e enbb e e e e bbeesantee e naneas 4-37
Scaling Data with the FBCL INSIIUCTIONvviiiiiiiiieis et e s et e e e e et a e e e s s sssaa e e e s e s stbeeeeessnees 4-37
Normalizing the Accumulator with the FBCL INSIIUCLIONoiuiiiiiiiiiiiiie e 4-39
SECTION 5. INSTRUCTION DESCRIPTIONS 5-1
oIS (0ot o TS} V0 0] o Yo £ PSP ETPR 5-2
Instruction Encoding Field Descriptors INtroOAUCLIONccoiiiiiiiiiieiiiiiiiie ettt e et e e 5-2
INStruction DESCIPION EXAMPIEuviiiiiiiiiiie ettt e st e e e st e e e e et e e e e e s aab et e e e s as e eeaeeasstreeeeesnntbeaens 5-6
{01 (Ut o] o D=2 ox g) [0 PP 5-7
SECTION 6. REFERENCE 6-1
D 1= WY (=T 0 g (o] VY =T o PP PPPPPRPT 6-2
Core Special FUNCLION REGISIEI IMAPviiiiiiiiiiiie sttt e et e et e e e s e e e e st e e e e e anatb e e e e e etbtaaaeeeassereeeeeannnnes 6-4
Program MEMOIY MBI ..ieoeiieiiiii ittt e ettt et e e e e e e e e s e e s aa et bb e bt b et e et et et e e eeaeeeaeeesaasa s sa bbb e bbb be e et eeeananeaeaeaeens 6-7
013 (Ut o] T =1 Y= T O 6-9
INStruction Set SUMMATY TaDIEooiii e e e e e ettt e e e s et eeee e e e e anneeeeeeaannneeeeesanees 6-11

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page iii

dsPIC30F/33F Programmer’s Reference Manual

NOTES:

DS70157B - page iv Prelimin ary © 2005 Microchip Technology Inc.

=]
MICROCHIP S
o
o
c
. . o
Section 1. Introduction =
o
-]
HIGHLIGHTS
This section of the manual contains the following topics:
I R 101 o To [o3 1o o P SURTRR 1-2
2 VT a [N = U@ o] [Tox 11 PSP RP P 1-2
R N B oAV Y o] o 4 1= T T ST] o o] o AP PP PP 1-2
1.4 Style and SYmbol CONVENTIONSccieiiiiiiieie e s e e e e a e e earaaeae s 1-3
1.5 INStruction Set SYMDOISooiiiiei e 1-4
G = 0= =1 =To B Lo Tor U 1Y o £ R 1-5

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 1-1

dsPIC30F/33F Programmer’s Reference Manual

1.1 Introduction

Microchip Technology’s focus is on products that meet the needs of the embedded control
market. We are a leading supplier of:

« 8-bit general purpose microcontrollers (PICmicro® MCUSs)

« dsPIC30F and dsPIC33F 16-bit Digital Signal Controllers (dsPIC® DSCs)
» Speciality and standard nonvolatile memory devices

« Security devices (KEELOQ® Security ICs)

» Application-specific standard products

Please request a Microchip Product Selector Guide for a listing of all the interesting products that
we have to offer. This literature can be obtained from your local sales office or downloaded from
the Microchip web site (www.microchip.com).

1.2 Manual Objective

PICmicro MCU, dsPIC30F and dsPIC33F devices are grouped by the size of their Instruction
Word and Data Path. The current device families are:

1. Base-Line: 12-hit Instruction Word length, 8-bit Data Path
2. Mid-Range: 14-hit Instruction Word length, 8-bit Data Path
3. High-End: 16-bit Instruction Word length, 8-bit Data Path
4. Enhanced: 16-bit Instruction Word length, 8-bit Data Path

5. dsPIC30F/33F: 24-bit Instruction Word length, 16-bit Data Path

This manual is a software developer’s reference for the dsPIC30F and dsPIC33F DSC device
families. This manual describes the Instruction Set in detail and also provides general information
to assist the user in developing software for the dsPIC30F and dsPIC33F families.

This manual does not include detailed information about the core, peripherals, system integration
or device-specific information. The user should refer to the dsPIC30F Family Reference Manual
(DS70046) for information about the core, peripherals and system integration. For device-spe-
cific information, the user should refer to the individual data sheets. The information that can be
found in the data sheets includes:

« Device memory map

« Device pinout and packaging details

» Device electrical specifications

« List of peripherals included on the device

Code examples are given throughout this manual. These examples are valid for any device in
the dsPIC30F or dsPIC33F family.

1.3 Development Support

Microchip offers a wide range of development tools that allow users to efficiently develop and
debug application code. Microchip’s development tools can be broken down into four categories:
1. Code generation

2. Hardware/Software debug

3. Device programmer

4. Product evaluation boards

Information about the latest tools, product briefs and user guides can be obtained from the
Microchip web site (www.microchip.com) or from your local Microchip Sales Office.

Microchip offers other reference tools to speed the development cycle. These include:
« Application Notes

» Reference Designs

* Microchip web site

« Local Sales Offices with Field Application Support

« Corporate Support Line

The Microchip web site lists other sites that may be useful references.

DS70157B-page 1-2

Prelimi nary © 2005 Microchip Technology Inc.

http://www.microchip.com

Section 1. Introduction

1.4 Style and Symbol Conventions

Throughout this document, certain style and font format conventions are used. Most format
conventions imply a distinction should be made for the emphasized text. The MCU industry has
many symbols and non-conventional word definitions/abbreviations. Table 1-1 provides a
description for many of the conventions contained in this document.

Table 1-1:

Document Conventions

Symbol or Term

Description

set To force a bit/register to a value of logic ‘1.
clear To force a bit/register to a value of logic ‘0’
Reset 1) To force a register/bit to its default state.

2) A condition in which the device places itself after a device Reset
occurs. Some bits will be forced to ‘0’ (such as interrupt enable bits),
while others will be forced to ‘1’ (such as the I/O data direction bits).

Oxnnnn Designates the number ‘nnnn’ in the hexadecimal number system.

These conventions are used in the code examples. For example, 0x013F

or 0xA800.

: (colon) Used to specify a range or the concatenation of registers/bits/pins.

One example is ACCAU:ACCAH:ACCAL, which is the concatenation of

three registers to form the 40-bit Accumulator.

Concatenation order (left-right) usually specifies a positional relationship

(MSb to LSb, higher to lower).

<> Specifies bit(s) locations in a particular register.
One example is SR<IPL2:IPLO> (or IPL<2:0>), which specifies the
register and associated bits or bit positions.
LSb, MSb Indicates the Least Significant or Most Significant bit in a field.
LSB, MSB, Isw, Indicates the Least/Most Significant Byte or least/most significant word in
msw a field of bits.

Courier Font

Used for code examples, binary numbers and for Instruction Mnemonics
in the text.

Times Font

Used for equations and variables.

Times, Bold Font,
Italics

Used in explanatory text for items called out from a
graphic/equation/example.

Note:

A Note presents information that we wish to re-emphasize, either to help
you avoid a common pitfall, or make you aware of operating differences
between some device family members. In most instances, a Note is used
in a shaded box (as illustrated below), however, when referenced to a
table, a Note will stand-alone and immediately follow the associated table
(as illustrated below Table 1-2).

Note: Thisis a Note in a shaded note box.

© 2005 Microchip Technology Inc.

Preliminary DS70157B-page 1-3

=]
—
-
o
o
c
O
=
o
S

dsPIC30F/33F Programmer’s Reference Manual

15 Instruction Set Symbols

The Summary Tables in Section 3.2 and Section 6.5, and the instruction descriptions in
Section 5.4 utilize the symbols shown in Table 1-2.

Table 1-2: Symbols Used in Instruction Summary Tables and Descriptions

Symbol Description
{} Optional field or operation
[text] The location addressed by text
(text) The contents of text
#text The literal defined by text
ae [b,c,d] |“a” mustbe in the set of [b, c, d]
<n:m> Register bit field
{label:} Optional label name
Acc Accumulator A or Accumulator B
AWB Accumulator Write Back
bit4 4-bit wide bit position (0:7 in Byte mode, 0:15 in Word mode)
Expr Absolute address, label or expression (resolved by the linker)
f File register address
litl 1-bit literal (0:1)
lit4 4-bit literal (0:15)
lit5 5-bit literal (0:31)
lit8 8-bit literal (0:255)
lit10 10-bit literal (0:255 in Byte mode, 0:1023 in Word mode)
lit14 14-bit literal (0:16383)
lit16 16-bit literal (0:65535)
lit23 23-bit literal (0:8388607)
Slit4 Signed 4-bit literal (-8:7)
Slité Signed 6-bit literal (-32:31) (range is limited to -16:16)
Slit10 Signed 10-bit literal (-512:511)
Slitl6 Signed 16-bit literal (-32768:32767)
TOS Top-of-Stack
Wb Base working register
wd Destination working register (direct and indirect addressing)
Wm, Wn Working register divide pair (dividend, divisor)
Wm * Wm Working register multiplier pair (same source register)
Wm *Wn Working register multiplier pair (different source registers)
Wn Both source and destination working register (direct addressing)
Wnd Destination working register (direct addressing)
Whns Source working register (direct addressing)
WREG Default working register (assigned to WO0)
Ws Source working register (direct and indirect addressing)
Wx Source Addressing mode and working register for X data bus prefetch
Wxd Destination working register for X data bus prefetch
Wy Source Addressing mode and working register for Y data bus prefetch
Wyd Destination working register for Y data bus prefetch

Note: The range of each symbol is instruction dependent. Refer to Section 5. “Instruction
Descriptions” for the specific instruction range.

DS70157B-page 1-4 Prelimin ary © 2005 Microchip Technology Inc.

Section 1. Introduction

1.6 Related Documents

Microchip, as well as other sources, offer additional documentation which can aid in your devel-
opment with dsPIC30F/dsPIC33F DSCs. These lists contain the most common documentation,
but other documents may also be available. Please check the Microchip web site
(www.microchip.com) for the latest published technical documentation.

1.6.1 Microchip Documentation

The following dsPIC30F/dsPIC33F documentation is available from Microchip at the time of this
writing. Many of these documents provide application-specific information that gives actual
examples of using, programming and designing with dsPIC30F/dsPIC33F DSCs.

1.

dsPIC30F Family Reference Manual (DS70046)

The dsPIC30F Family Reference Manual provides information about the dsPIC30F architec-
ture, peripherals and system integration features. The details of device operation are
provided in this document, along with numerous code examples. The information contained
in this manual complements the information in the dsPIC33F Data Sheet.

dsPIC30F Family Overview (DS70043) and dsPIC33F Product Overview (DS70155)
These documents provide a summary of the available family variants, including device
pinouts, memory sizes and available peripherals.

dsPIC30F Data Sheet (DS70083) and dsPIC33F Data Sheet (DS70165)

The data sheets contain device-specific information, such as pinout and packaging details,
electrical specifications and memory maps. Please check the Microchip web site
(www.microchip.com) for a list of available device data sheets.

1.6.2 Third Party Documentation

There are several documents available from third party sources around the world. Microchip
does not review these documents for technical accuracy. However, they may be a helpful source
for understanding the operation of Microchip dsPIC30F or dsPIC33F devices. Please refer to the
Microchip web site (www.microchip.com) for third party documentation related to the dsPIC30F
and dsPIC33F families.

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 1-5

=]
—
-
o
o
c
O
=
o
S

http://www.microchip.com
http://www.microchip.com
http://www.microchip.com

dsPIC30F/33F Programmer’s Reference Manual

NOTES:

DS70157B-page 1-6 Prelimin ary © 2005 Microchip Technology Inc.

MICROCHIP
Section 2. Programmer’s M odel

HIGHLIGHTS
This section of the manual contains overview information about the dsPIC30F and dsPIC33F
devices. It contains the following major topics:

2.1 ASPIC30F/33F OVEIVIEW.....cureieiuiieieiriieiireee e sire e e st sne e s e e eenne e nnne e e s e 2-2
2.2 Programmer’s MOEL..........uuiiiii ittt ettt e e et e e e e e e e nae s

U
5
o
Q
o
3
3
@

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 2-1

dsPIC30F/33F Programmer’s Reference Manual

2.1 dsPIC30F/33F Overview

The core of dsPIC30F and dsPIC33F devices is a 16-bit (data) modified Harvard architecture
with an enhanced instruction set, including support for DSP. The core has a 24-bit instruction
word, with a variable length opcode field. The Program Counter (PC) is 23 bits wide and
addresses up to 4M x 24 bits of user program memory space. A single-cycle instruction prefetch
mechanism is used to help maintain throughput and provides predictable execution. The majority
of instructions execute in a single cycle, and overhead free program loop constructs are
supported using the DO and REPEAT instructions, both of which are interruptible.

The dsPIC30F and dsPIC33F have sixteen, 16-bit working registers. Each of the working regis-
ters can act as a data, address or offset register. The 16th working register (W15) operates as a
software Stack Pointer for interrupts and calls.

The instruction set is identical for the dsPIC30F and dsPIC33F architectures. There are two
classes of instructions: the MCU class of instructions and the DSP class of instructions. These
two instruction classes are seamlessly integrated into the architecture and execute from a single
execution unit. The instruction set includes many Addressing modes and was designed for
optimum C compiler efficiency.

The data space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred
to as X and Y data memory. Each memory block has its own independent Address Generation
Unit (AGU). The MCU class of instructions operate solely through the X memory AGU, which
accesses the entire memory map as one linear data space. The DSP dual source class of instruc-
tions operates through the X and Y AGUs, which splits the data address space into two parts.
The X and Y data space boundary is arbitrary and device-specific.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program
space at any 16K program word boundary, defined by the 8-bit Program Space Visibility Page
(PSVPAG) register. The program to data space mapping feature lets any instruction access
program space as if it were the data space, which is useful for storing data coefficients.

Overhead free circular buffers (modulo addressing) are supported in both X and Y address
spaces. The modulo addressing removes the software boundary checking overhead for DSP
algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class
of instructions. The X AGU also supports bit-reverse addressing, to greatly simplify input or
output data reordering for radix-2 FFT algorithms.

The core supports Inherent (no operand), Relative, Literal, Memory Direct, Register Direct,
Register Indirect and Register Offset Addressing modes. Each instruction is associated with a
predefined Addressing mode group, depending upon its functional requirements. As many as 7
Addressing modes are supported for each instruction.

For most instructions, the dsPIC30F/33F is capable of executing a data (or program data) mem-
ory read, a working register (data) read, a data memory write and a program (instruction) memory
read per instruction cycle. As a result, 3-operand instructions can be supported, allowing

A + B = C operations to be executed in a single cycle.

The DSP engine features a high-speed, 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit
saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of
shifting a 40-bit value, up to 16 bits right, or up to 16 bits left, in a single cycle. The DSP
instructions operate seamlessly with all other instructions and have been designed for optimal
real-time performance. The MAC instruction and other associated instructions can concurrently
fetch two data operands from memory while multiplying two working registers. This requires that
the data space be split for these instructions and linear for all others. This is achieved in a
transparent and flexible manner through dedicating certain working registers to each address
space.

The dsPIC30F has a vectored exception scheme with support for up to 8 sources of
non-maskable traps and up to 54 interrupt sources. The dsPIC33F has a similar exception
scheme, but supports up to 118 interrupt sources. In both families, each interrupt source can be
assigned to one of seven priority levels.

DS70157B-page 2-2

Prelimi nary © 2005 Microchip Technology Inc.

Section 2. Programmer’s Model

2.2

Programmer’s Model

The programmer’s model diagram for the dsPIC30F and dsPIC33F is shown in Figure 2-1.

All registers in the programmer’s model are memory mapped and can be manipulated directly by

the instruction set. A description of each register is provided in Table 2-1.

Table 2-1: Programmer’s Model Register Descriptions

Register Description
ACCA, ACCB 40-bit DSP Accumulators
CORCON CPU Core Configuration register
DCOUNT DO Loop Count register
DOEND DO Loop End Address register
DOSTART DO Loop Start Address register v
PC 23-bit Program Counter g
PSVPAG Program Space Visibility Page Address register % 5
RCOUNT Repeat Loop Count register % g
SPLIM Stack Pointer Limit Value register -)
SR ALU and DSP Engine STATUS register I
TBLPAG Table Memory Page Address register
WO0-W15 Working register array

2.2.1 Working Register Array

The 16 working (W) registers can function as data, address or offset registers. The function of a
W register is determined by the instruction that accesses it.

Byte instructions, which target the working register array, only affect the Least Significant Byte
(LSB) of the target register. Since the working registers are memory mapped, the Least and Most
Significant Bytes can be manipulated through byte-wide data memory space accesses.

2.2.2 Default Working Register (WREG)

The instruction set can be divided into two instruction types: working register instructions and file
register instructions. The working register instructions use the working register array as data
values, or as addresses that point to a memory location. In contrast, file register instructions
operate on a specific memory address contained in the instruction opcode.

File register instructions that also utilize a working register do not specify the working register that
is to be used for the instruction. Instead, a default working register (WREG) is used for these file
register instructions. Working register, WO, is assigned to be the WREG. The WREG assignment
is not programmable.

2.2.3 Software Stack Frame Pointer

A frame is a user-defined section of memory in the stack, used by a function to allocate memory
for local variables. W14 has been assigned for use as a Stack Frame Pointer with the link (LNK)
and unlink (ULNK) instructions. However, if a Stack Frame Pointer and the LNK and ULNK
instructions are not used, W14 can be used by any instruction in the same manner as all other
W registers. See Section 4.7.3 “ Software Stack Frame Pointer” for detailed information about
the Frame Pointer.

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 2-3

dsPIC30F/33F Programmer’s Reference Manual

Figure 2-1: Programmer’s Model Diagram
15 0
8 WO/WREG A " !
| - PUSH.S Shadow
DIV and MUL W1
Result Registers 7
ult Regi W2 | |:| DO Shadow |
Lo - — i
_ w3 Legend
=
W4
MAC Operand W5
Registers 3
9 W6
L W7
Working Registers
e > g Reg
W9
MAC Address S
Registers W10
W11
S~—
W12/MAC Offset
W13/MAC Write Back
W14/Frame Pointer
W15*/Stack Pointer
/ * W15 & SPLIM not shadowed
SPLIM* ‘ Stack Pointer Limit Register
39 31 15 0
DSP ACCA
Accumulators ACCB
22 0
‘ Program Counter
7 0
| TBLPAG | Data Table Page Address
7 0
| PSVPAG | Program Space Visibility Page Address
15 0
| RCOUNT | REPEAT Loop Counter
15 0
| DCOUNT H DO Loop Counter
22 0
| DOSTART H DO Loop Start Address
T
22 0
| DOEND n DO Loop End Address
[
15 0
| CORCON | CPU Core Control Register

‘ 0A| oB | SA ‘ SB |OAB‘SAB| DA WIPLZ‘ IPLl‘IPLO| rRal N Jov]| z] c

Status Register

- SRH > < SRL >

DS70157B-page 2-4 Prelimin ary © 2005 Microchip Technology Inc.

Section 2. Programmer’s Model

2.2.4 Software Stack Pointer

W15 serves as a dedicated Software Stack Pointer, and will be automatically modified by function
calls, exception processing and returns. However, W15 can be referenced by any instruction in
the same manner as all other W registers. This simplifies reading, writing and manipulating the
Stack Pointer. Refer to Section 4.7.1 “ Software Stack Pointer” for detailed information about
the Stack Pointer.

225 Stack Pointer Limit Register (SPLIM)

The SPLIM is a 16-bit register associated with the Stack Pointer. It is used to prevent the Stack
Pointer from overflowing and accessing memory beyond the user allocated region of stack
memory. Refer to Section 4.7.5 “Stack Pointer Overflow” for detailed information about the
SPLIM.

2.2.6 Accumulator A, Accumulator B

Accumulator A (ACCA) and Accumulator B (ACCB) are 40-bit wide registers, utilized by DSP
instructions to perform mathematical and shifting operations. Each accumulator is composed of
3 memory mapped registers:

e AccxU (bits 39-32)

e AccxH (bits 31-16)

e AccxL (bits 15-0)

Refer to Section 4.12 “Accumulator Usage” for details on using ACCA and ACCB.

U
T
S
g
Q 3
© 3
@

2.2.7 Program Counter

The Program Counter (PC) is 23 bits wide. Instructions are addressed in the 4M x 24-bit user
program memory space by PC<22:1>, where PC<0> is always set to ‘0’ to maintain instruction
word alignment and provide compatibility with data space addressing. This means that during
normal instruction execution, the PC increments by 2.

Program memory located at 0x80000000 and above is utilized for device configuration data, Unit
ID and Device ID. This region is not available for user code execution and the PC can not access
this area. However, one may access this region of memory using table instructions. Refer to the
dsPIC30F Family Reference Manual (DS70046) for details on accessing the configuration data,
Unit ID and Device ID.

2.2.8 TBLPAG Register

The TBLPAG register is used to hold the upper 8 bits of a program memory address during table
read and write operations. Table instructions are used to transfer data between program memory
space and data memory space. Refer to the dsPIC30F Family Reference Manual (DS70046) for
details on accessing program memory with the table instructions.

2.2.9 PSVPAG Register

Program space visibility allows the user to map a 32-Kbyte section of the program memory space
into the upper 32 Kbytes of data address space. This feature allows transparent access of
constant data through instructions that operate on data memory. The PSVPAG register selects
the 32-Kbyte region of program memory space that is mapped to the data address space. Refer
to the dsPIC30F Family Reference Manual (DS70046) for details on program space visibility.

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 2-5

dsPIC30F/33F Programmer’s Reference Manual

2.2.10 RCOUNT Register

The 14-bit RCOUNT register contains the loop counter for the REPEAT instruction. When a
REPEAT instruction is executed, RCOUNT is loaded with the repeat count of the instruction,
either “lit14” for the “REPEAT #1it14” instruction, or the contents of Wn for the “REPEAT Wn”"
instruction. The REPEAT loop will be executed RCOUNT + 1 time.

Note 1: If a REPEAT loop is executing and gets interrupted, RCOUNT may be cleared by
the Interrupt Service Routine to break out of the REPEAT loop when the foreground
code is re-entered.

2. Refer to the dsPIC30F Family Reference Manual (DS70046) for complete details
about REPEAT loops.

2211 DCOUNT Register

The 14-bit DCOUNT register contains the loop counter for hardware DO loops. When a DO
instruction is executed, DCOUNT is loaded with the loop count of the instruction, either “lit14” for
the “DO #1it14,Expr”instruction, or the 14 Least Significant bits of Ws for the “DO Ws, Expr”
instruction. The DO loop will be executed DCOUNT + 1 time.

Note 1: DCOUNT contains a shadow register. See Section 2.2.16 “Shadow Registers”
for information on shadowing.

2. Refer to the dsPIC30F Family Reference Manual (DS70046) for complete details
about DO loops.

2.2.12 DOSTART Register

The DOSTART register contains the starting address for a hardware DO loop. When a DO
instruction is executed, DOSTART is loaded with the address of the instruction following the DO
instruction. This location in memory is the start of the DO loop. When looping is activated,
program execution continues with the instruction stored at the DOSTART address after the last
instruction in the DO loop is executed. This mechanism allows for zero overhead looping.

Note 1: DOSTART has a shadow register. See Section 2.2.16 “Shadow Registers” for
information on shadowing.

2. Refer to the dsPIC30F Family Reference Manual (DS70046) for complete details
about DO loops.

2.2.13 DOEND Register

The DOEND register contains the ending address for a hardware DO loop. When a DO
instruction is executed, DOEND is loaded with the address specified by the expression in the DO
instruction. This location in memory specifies the last instruction in the DO loop. When looping is
activated and the instruction stored at the DOEND address is executed, program execution will
continue from the DO loop start address (stored in the DOSTART register).

Note 1: DOEND has a shadow register. See Section 2.2.16 “Shadow Registers” for
information on shadowing.

2. Refer to the dsPIC30F Family Reference Manual (DS70046) for complete details
about DO loops.

DS70157B-page 2-6 Prelimin ary © 2005 Microchip Technology Inc.

Section 2. Programmer’s Model

2.2.14 STATUS Register

The 16-bit STATUS register, shown in Register 2-1, maintains status information for instructions
which have most recently been executed. Operation Status bits exist for MCU operations, loop
operations and DSP operations. Additionally, the STATUS register contains the CPU Interrupt
Priority Level bits, IPL<2:0>, which are used for interrupt processing.

22141 MCU ALU Status Bits

The MCU operation Status bits are either affected or used by the majority of instructions in the
instruction set. Most of the logic, math, rotate/shift and bit instructions modify the MCU Status bits
after execution, and the conditional Branch instructions use the state of individual Status bits to
determine the flow of program execution. All conditional branch instructions are listed in
Section 4.8 “Conditional Branch Instructions”.

The Carry, Zero, Overflow, Negative and Digit Carry (C, Z, OV, N and DC) bits are used to show
the immediate status of the MCU ALU. They indicate when an operation has resulted in a Carry,
Zero, Overflow, Negative result and Digit Carry, respectively. When a subtract operation is
performed, the C flag is used as a Borrow flag.

The Z status bit is a special zero status bit that is useful for extended precision arithmetic. The Z
bit functions like a normal Z flag for all instructions except those that use a carry or borrow input
(aDDC, CPB, SUBB and SUBBR). See Section 4.9 “Z Status Bit” for usage of the Z status bit.

U
T
S
g
Q 3
© 3
@

Note 1: Al MCU bits are shadowed during execution of the PUSH. S instruction and they are
restored on execution of the POP. S instruction.

2. All MCU bhits, except the DC flag (which is not in the SRL), are stacked during
exception processing (see Section 4.7.1 “ Software Stack Pointer”).

2.2.14.2 Loop Status Bits

The DO Active and REPEAT Active (DA, RA) hits are used to indicate when looping is active.
The DO instructions affect the DA flag, which indicates that a DO loop is active. The DA flag is
set to ‘1’ when the first instruction of the DO loop is executed, and it is cleared when the last
instruction of the loop completes final execution. Likewise, the RA flag indicates that a REPEAT
instruction is being executed, and it is only affected by the REPEAT instructions. The RA flag is
set to ‘1’ when the instruction being repeated begins execution, and it is cleared when the
instruction being repeated completes execution for the last time.

The DA flag is read-only. This means that looping may not be initiated by writing a ‘1’ to DA, nor
looping may be terminated by writing a ‘0’ to DA. If a DO loop must be terminated prematurely,
the EDT bit, CORCON<11>, should be used.

Since the RA flag is also read-only, it may not be directly cleared. However, if a REPEAT or its
target instruction is interrupted, the Interrupt Service Routine may clear the RA flag of the SRL,
which resides on the stack. This action will disable looping once program execution returns from
the Interrupt Service Routine, because the restored RA will be ‘0.

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 2-7

dsPIC30F/33F Programmer’s Reference Manual

2.2.143 DSP ALU Status Bits

The high byte of the STATUS Register (SRH) is used by the DSP class of instructions, and it is
modified when data passes through one of the adders. The SRH provides status information
about overflow and saturation for both accumulators. The Saturate A, Saturate B, Overflow A and
Overflow B (SA, SB, OA, OB) bits provide individual accumulator status, while the Saturate AB
and Overflow AB (SAB, OAB) bits provide combined accumulator status. The SAB and OAB bits
provide the software developer efficiency in checking the register for saturation or overflow.

The OA and OB bits are used to indicate when an operation has generated an overflow into the
guard bits (bits 32 through 39) of the respective accumulator. This condition can only occur when
the processor is in Super Saturation mode, or if saturation is disabled. It indicates that the
operation has generated a number which cannot be represented with the lower 31 bits of the
accumulator.

The SA and SB bits are used to indicate when an operation has generated an overflow out of the
Most Significant bit of the respective accumulator. The SA and SB bits are active, regardless of
the Saturation mode (Disabled, Normal or Super) and may be considered “sticky”. Namely, once
the SA or SB is set to ‘1’, it can only be cleared manually by software, regardless of subsequent
DSP operations. When required, it is recommended that the bits be cleared with the BCLR
instruction.

For convenience, the OA and OB bits are logically ORed together to form the OAB flag, and the
SA and SB bits are logically ORed to form the SAB flag. These cumulative status bits provide
efficient overflow and saturation checking when an algorithm is implemented, which utilizes both
accumulators. Instead of interrogating the OA and the OB bits independently for arithmetic
overflows, a single check of OAB may be performed. Likewise, when checking for saturation,
SAB may be examined instead of checking both the SA and SB bits. Note that clearing the SAB
flag will clear both the SA and SB bits.

2.2.14.4 Interrupt Priority Level Status Bits

The three Interrupt Priority Level (IPL) bits of the SRL, SR<7:5>, and the IPL3 bit, CORCON<3>,
set the CPU’s IPL which is used for exception processing. Exceptions consist of interrupts and
hardware traps. Interrupts have a user-defined priority level between 0 and 7, while traps have a
fixed priority level between 8 and 15. The fourth Interrupt Priority Level bit, IPL3, is a special IPL
bit that may only be read or cleared by the user. This bit is only set when a hardware trap is
activated and it is cleared after the trap is serviced.

The CPU’s IPL identifies the lowest level exception which may interrupt the processor. The
interrupt level of a pending exception must always be greater than the CPU’s IPL for the CPU to
process the exception. This means that if the IPL is 0, all exceptions at priority Level 1 and above
may interrupt the processor. If the IPL is 7, only hardware traps may interrupt the processor.

When an exception is serviced, the IPL is automatically set to the priority level of the exception
being serviced, which will disable all exceptions of equal and lower priority. However, since the
IPL field is read/write, one may modify the lower three bits of the IPL in an Interrupt Service
Routine to control which exceptions may preempt the exception processing. Since the SRL is
stacked during exception processing, the original IPL is always restored after the exception is
serviced. If required, one may also prevent exceptions from nesting by setting the NSTDIS bit,
INTCON1<15>.

Note: Refertothe dsPIC30F Family Reference Manual (DS70046) for complete details on

exception processing.

DS70157B-page 2-8

Prelimi nary © 2005 Microchip Technology Inc.

Section 2. Programmer’s Model

2.2.15 Core Control Register

The 16-bit CPU Core Control Register (CORCON), shown in Register 2-2, is used to set the
configuration of the CPU. This register provides the ability to:

* map program space into data space

 set the ACCA and ACCB saturation enable

« set the Data Space Write Saturation mode

« set the Accumulator Saturation and Rounding modes

« set the Multiplier mode for DSP operations

» terminate DO loops prematurely

On device Reset, the CORCON is set to 0x0020, which sets the following mode:

« Program Space not Mapped to Data Space (PSV = 0)

* ACCA and ACCB Saturation Disabled (SATA = 0, SATB = 0)
« Data Space Write Saturation Enabled (SATDW = 1)

« Accumulator Saturation mode set to normal (ACCSAT = 0)

« Accumulator Rounding mode set to unbiased (RND = 0)

< DSP Multiplier mode set to signed fractional (US = o, IF = 0)

U
T
S
g
Q 3
© 3
@

In addition to setting CPU modes, the CORCON contains status information about the DO loop
nesting level (DL<2:0>) and the IPL<3> status bit, which indicates if a trap exception is being
processed.

2.2.16 Shadow Registers

A shadow register is used as a temporary holding register and can transfer its contents to or from
the associated host register upon some event. Some of the registers in the programmer’s model
have a shadow register, which is utilized during the execution of a DO, POP.S or PUSH.S
instruction. Shadow register usage is shown in Table 2-2.

Table 2-2: Automatic Shadow Register Usage
Location DO POP.S/PUSH.S

DCOUNT Yes —
DOSTART Yes —
DOEND Yes —
STATUS Register — — Yes

DC, N, OV, Z and C bits

WO-W3 — Yes

Since the DCOUNT, DOSTART and DOEND registers are shadowed, the ability to nest DO loops
without additional overhead is provided. Since all shadow registers are one register deep, up to
one level of DO loop nesting is possible. Further nesting of DO loops is possible in software, with
support provided by the DO Loop Nesting Level Status bits in the CORCON, CORCON<10:8>.

Note: All shadow registers are one register deep and are not directly accessible.
Additional shadowing may be performed in software using the software stack.

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 2-9

dsPIC30F/33F Programmer’s Reference Manual

Register 2-1: SR, STATUS Register

R-0

High Byte (SRH):

R-0 R/C-0 R/C-0 R-0

R/C-0

R-0

R/W-0

OA

| oB | sa | sB OAB

SAB

DA

DC

bit 15

bit 8

bit 15

bit 14

bit 13

bit 12

bit 11

bit 10

bit 9

bit 8

bit 7-5

bit 4

bit 3

bit 2

Low Byte (SRL):
R/W-0 R/W-0 R/W-0 R-0

R/W-0

R/W-0 R/W-0 R/W-0

IPL<2:0> RA

N

ov Z C

bit 7

bit 0

OA: Accumulator A Overflow bit
1 = Accumulator A overflowed
0 = Accumulator A has not overflowed

OB: Accumulator B Overflow bit
1 = Accumulator B overflowed
0 = Accumulator B has not overflowed

SA: Accumulator A Saturation bit(: 2

1 = Accumulator A is saturated or has been saturated at some time

0 = Accumulator A is not saturated
SB: Accumulator B Saturation bit(}: 2

1 = Accumulator B is saturated or has been saturated at some time

0 = Accumulator B is not saturated

OAB: OA || OB Combined Accumulator Overflow bit
1 = Accumulators A or B have overflowed
0 = Neither Accumulators A or B have overflowed

SAB: SA || SB Combined Accumulator bit(%: 2 3)

1 = Accumulators A or B are saturated or have been saturated at some time in the past

0 = Neither Accumulators A or B are saturated
DA: DO Loop Active bit

1= DO loop in progress

0 = DO loop not in progress

DC: MCU ALU Half Carry bit

1 = A carry-out from the Most Significant bit of the lower nibble occurred

0 = No carry-out from the Most Significant bit of the lower nibble occurred

IPL<2:0>: Interrupt Priority Level bits®)

111 = CPU Interrupt Priority Level is 7 (15). User interrupts disabled

110 = CPU Interrupt Priority Level is 6 (14)
101 = CPU Interrupt Priority Level is 5 (13)
100 = CPU Interrupt Priority Level is 4 (12)
011 = CPU Interrupt Priority Level is 3 (11)
010 = CPU Interrupt Priority Level is 2 (10)
001 = CPU Interrupt Priority Level is 1 (9)
000 = CPU Interrupt Priority Level is 0 (8)
RA: REPEAT Loop Active bit

1 = REPEAT loop in progress

0 = REPEAT loop not in progress

N: MCU ALU Negative bit

1 = The result of the operation was negative
0 = The result of the operation was not negative

OV: MCU ALU Overflow bit
1 = Overflow occurred
0 = No overflow occurred

DS70157B-page 2-10 Preliminary

© 2005 Microchip Technology Inc.

Section 2. Programmer’s Model

Register 2-1: SR, STATUS Register (Continued)

bit 1 Z: MCU ALU Zero bit(®
1 = The result of the operation was zero
0 = The result of the operation was not zero

bit O C: MCU ALU Carry/Borrow bit
1 = A carry-out from the Most Significant bit occurred
0 = No carry-out from the Most Significant bit occurred
Note 1: This bit may be read or cleared, but not set.
2: Once this bhit is set, it must be cleared manually by software.

3: Clearing this bit will clear SA and SB.
4: This bit is read only.
5: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU

Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1.

6: Refer to Section 4.9 “Z Status Bit” for operation with ADDC, CPB, SUBB and SUBBR

instructions. (8

S5

Legend: % g

R = Readable bit W = Writable bit C = Clearable bit - o
-n = Value at POR ‘1’ = bit is set ‘0’ = bit is cleared

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 2-11

dsPIC30F/33F Programmer’s Reference Manual

Register 2-2: CORCON, Core Control Register
High Byte:
U U u R/W-0 R(0)/W-0 R-0 R-0 R/W-0
= = = us | EDT | DL<2:0>
bit 15 bit 8
Low Byte:
R/W-0 R/W-0 R/W-1 R/W-0 R/C-0 R/W-0 R/W-0 R/W-0
SATA SATB SATDW ACCSAT IPL3 PSSV RND IF
bit 7 bit 0

bit 15-13 Unused

bit 12

bit 11

bit 10-8

bit 7

bit 6

bit 5

bit 4

bit 3

bit 2

US: Unsigned or Signed Multiplier Mode Select bit
1 = Unsigned mode enabled for DSP multiply operations
0 = Signed mode enabled for DSP multiply operations

EDT: Early DO Loop Termination Control bit(})
1 = Terminate executing DO loop at end of current iteration
0 = No effect

DL<2:0>: DO Loop Nesting Level Status bits(3

111 = DO looping is nested at 7 levels

110 = DO looping is nested at 6 levels

110 = DO looping is nested at 5 levels

110 = DO looping is nested at 4 levels

011 = DO looping is nested at 3 levels

010 = DO looping is nested at 2 levels

001 = DO looping is active, but not nested (just 1 level)
000 = DO looping is not active

SATA: ACCA Saturation Enable bit
1 = Accumulator A saturation enabled
0 = Accumulator A saturation disabled

SATB: ACCB Saturation Enable bit
1 = Accumulator B saturation enabled
0 = Accumulator B saturation disabled

SATDW: Data Space Write from DSP Engine Saturation Enable bit
1 = Data space write saturation enabled
0 = Data space write saturation disabled

ACCSAT: Accumulator Saturation Mode Select bit
1 = 9.31 saturation (Super Saturation)
0 = 1.31 saturation (Normal Saturation)

IPL3: Interrupt Priority Level 3 Status bit(* %)
1 = CPU Interrupt Priority Level is 8 or greater (trap exception activated)
0 = CPU Interrupt Priority Level is 7 or less (no trap exception activated)

PSV: Program Space Visibility in Data Space Enable bit
1 = Program space visible in data space
0 = Program space not visible in data space

DS70157B-page 2-12

Preliminary

© 2005 Microchip Technology Inc.

Section 2. Programmer’s Model

Register 2-2: CORCON, Core Control Register (Continued)

bit 1 RND: Rounding Mode Select bit
1 = Biased (conventional) rounding enabled
0 = Unbiased (convergent) rounding enabled

bit 0 IF: Integer or Fractional Multiplier Mode Select bit
1 = Integer mode enabled for DSP multiply operations
0 = Fractional mode enabled for DSP multiply operations

Note 1: This bit will always read ‘0’.
2: DL<2:1> are read only.
1 The first two levels of DO loop nesting are handled by hardware.

3
4: This bit may be read or cleared, but not set.
5

1 This bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority

Level.
U
Legend: o
R = Readable bit W = Writable bit C = Clearable bit X = bit is unknown < %
-n = Value at POR ‘1’ = bit is set ‘0’ = bit is cleared U = Unimplemented bit, read as ‘0’ 8 3
@ 3
@

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 2-13

dsPIC30F/33F Programmer’s Reference Manual

NOTES:

DS70157B-page 2-14 Prelimin ary © 2005 Microchip Technology Inc.

MICROCHIP

Section 3. Instruction Set Overview

HIGHLIGHTS

This section of the manual contains the following major topics:

0 700 R 11 Yo (1o 1o o 3-2
3.2 INSIrUCHION St OVEIVIEWviiieiiiiieeiiii ettt st sb et e e st e e e e tbeenaes 3-2
3.3 Instruction Set SUMMaAry TaBIEScooiiiiiiiiie e 3-3

©)
<
@
<
@
=

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 3-1

dsPIC30F/33F Programmer’s Reference Manual

3.1 Introduction

The dsPIC30F/33F instruction set provides a broad suite of instructions, which supports tradi-
tional microcontroller applications and a class of instructions, which supports math intensive
applications. Since almost all of the functionality of the PICmicro MCU instruction set has been
maintained, this hybrid instruction set allows a friendly DSP migration path for users already
familiar with the PICmicro microcontroller.

3.2 Instruction Set Overview

The dsPIC30F/33F instruction set contains 84 instructions, which can be grouped into the ten
functional categories shown in Table 3-1. Table 1-2 defines the symbols used in the instruction
summary tables, Table 3-2 through Table 3-11. These tables define the syntax, description,
storage and execution requirements for each instruction. Storage requirements are represented
in 24-bit instruction words and execution requirements are represented in instruction cycles.

Table 3-1: dsPIC30F/33F Instruction Groups
Functional Group Summary Table Page #
Move Instructions Table 3-2 3-3
Math Instructions Table 3-3 3-4
Logic Instructions Table 3-4 3-5
Rotate/Shift Instructions Table 3-5 3-6
Bit Instructions Table 3-6 3-7
Compare/Skip Instructions Table 3-7 3-8
Program Flow Instructions Table 3-8 3-9
Shadow/Stack Instructions Table 3-9 3-10
Control Instructions Table 3-10 3-10
DSP Instructions Table 3-11 3-10

Most instructions have several different Addressing modes and execution flows, which require
different instruction variants. For instance, there are six unique ADD instructions and each
instruction variant has its own instruction encoding. Instruction format descriptions and specific
instruction operation are provided in Section 3. “Instruction Set Overview”. Additionally, a
composite alphabetized instruction set table is provided in Section 6. “Reference”.

3.2.1 Multi-Cycle Instructions

As the instruction summary tables show, most instructions execute in a single cycle, with the
following exceptions:

* Instructions DO, MOV.D, POP.D, PUSH.D, TBLRDH, TBLRDL, TBLWTH and
TBLWTL require 2 cycles to execute.

 Instructions DIV.S, DIV.U and DIVF are single-cycle instructions, which should be
executed 18 consecutive times as the target of a REPEAT instruction.

« Instructions that change the program counter also require 2 cycles to execute, with the
extra cycle executed as a NOP. SKIP instruction, which skips over a 2-word instruction,
requires 3 instruction cycles to execute, with 2 cycles executed as a NOP.

e« The RETFIE, RETLW and RETURN are a special case of an instruction that changes the
program counter. These execute in 3 cycles, unless an exception is pending and then they
execute in 2 cycles.

Note: Instructions which access program memory as data, using Program Space Visibility,
will incur a one or two cycle delay. However, when the target instruction of a
REPEAT loop accesses program memory as data, only the first execution of the
target instruction is subject to the delay. See the dsPIC30F Family Reference
Manual (DS70046) for details.

DS70157B-page 3-2

Prelimin ary © 2005 Microchip Technology Inc.

Section 3. Instruction Set Overview

3.2.2 Multi-Word Instructions

As defined by Table 3-2: “Move Instructions”, almost all instructions consume one instruction
word (24 bits), with the exception of the CALL, DO and GOTO instructions, which are Program
Flow Instructions, listed in Table 3-8. These instructions require two words of

memory because their opcodes embed large literal operands.

Note: When the optional {, WREG} operand is specified, the destination of the instruction is
WREG. When {,WREG} is not specified, the destination of the instruction is the file
register f.

3.3 Instruction Set Summary Tables
Table 3-2: Move Instructions
Assembly Syntax Description Words | Cycles | Page #

EXCH Wns,Wnd Swap Wns and Wnd 1 1 5-115

MOV f {, WREG}(S€€ Note) | Moye f to destination 1 1 5-145

MOV WREGf Move WREG to f 1 1 5-146

MOV f,wnd Move f to Wnd 1 1 5-147

MOV Whns,f Move Wns to f 1 1 5-148

MOV.B #it8,wnd Move 8-bit literal to Wnd 1 1 5-149

MOV #it16,Wnd Move 16-bit literal to Wnd 1 1 5-150

MOV [Ws+Slit10],wnd Move [Ws + signed 10-bit offset] to Wnd 1 1 5-151

MOV Whns,[Wd+Slit10] Move Wns to [Wd + signed 10-bit offset] 1 1 5-152

MOV Ws,wd Move Ws to Wd 1 1 5-153

MOV.D Ws,Wnd Move double Ws to Wnd:Wnd + 1 1 2 5-155

MOV.D Wns,Wd Move double Wns:Wns + 1 to Wd 1 2 5-157

SWAP Wn Whn = byte or nibble swap Wn 1 1 5-249

TBLRDH Ws,Wd Read high program word to Wd 1 2 5-250

TBLRDL Ws,Wd Read low program word to Wd 1 2 5-252 O

TBLWTH Ws,Wd Write Ws to high program word 1 2 5-254 é

TBLWTL Ws,Wd Write Ws to low program word 1 2 5-256 '<‘
=
=

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 3-3

dsPIC30F/33F Programmer’s Reference Manual

Table 3-3: Math Instructions

Assembly Syntax Description Words | Cycles | Page #
ADD f{WREGHY |Destination = f + WREG 1 1 5-7
ADD #lit10,Wn Whn = [it10 + Wn 1 1 5-8
ADD Wh,#it5,Wd Wd = Wb + Iit5 1 1 5-9
ADD Wb, Ws,Wd Wd = Wb + Ws 1 1 5-10
ADDC f{WREG})Y |Destination = f + WREG + (C) 1 1 5-14
ADDC #lit10,Wn Wn = [it10 + Wn + (C) 1 1 5-15
ADDC Whb,#lit5,wd Wd = Wb + Iit5 + (C) 1 1 5-16
ADDC Wb,Ws,wd Wd = Wb + Ws + (C) 1 1 5-17
DAW.B Wn Whn = decimal adjust Wn 1 1 5-95
DEC f{WREGHY |Destination=f —1 1 1 5-96
DEC Ws,Wd wd=Ws-1 1 1 5-97
DEC2 f{WREG}Y |Destination=f-2 1 1 5-98
DEC2 Ws,wd Wwd = Ws -2 1 1 5-99
DIV.S Wm, Wn Signed 16/16-bit integer divide 1 18@ | 5101
DIV.SD Wm, Wn Signed 32/16-bit integer divide 1 18@ | 5101
DIVU Wm, Wn Unsigned 16/16-bit integer divide 1 18@ | 5103
DIV.UD Wm, Wn Unsigned 32/16-bit integer divide 1 18@ | 5103
DIVE Wm, Wn Signed 16/16-bit fractional divide 1 18@ | 5-105
INC f{WREG}Y |Destination = f+ 1 1 1 5-124
INC Ws,Wd Wwd=Ws +1 1 1 5-125
INC2 f{WREG}Y |Destination = f + 2 1 1 5-126
INC2 Ws,Wd Wd = Ws + 2 1 1 5-127
MUL f W3:W2 = f* WREG 1 1 5-169
MUL.SS Whb,Ws,Wnd {Wnd + 1,Wnd} = sign(Wb) * sign(Ws) 1 1 5-170
MUL.SU Wb, #lit5,Wnd {Wnd + 1,Wnd} = sign(Whb) * unsign(lit5) 1 1 5-172
MUL.SU Wb,Ws,Wnd {Wnd + 1,Wnd} = sign(Whb) * unsign(Ws) 1 1 5-174
MUL.US Whb,Ws,Wnd {Wnd + 1,Wnd} = unsign(Wb) * sign(Ws) 1 1 5-176
MUL.UU Wb #lit5,Wnd {Wnd + 1,Wnd} = unsign(Wb) * unsign(lit5) 1 1 5-178
MUL.UU Wb,Ws,Wnd {Wnd + 1,Wnd} = unsign(Wb) * unsign(Ws) 1 1 5-179
SE Ws,Wnd Wnd = sign-extended Ws 1 1 5-220
SuB f{WREG}D |Destination = f - WREG 1 1 5-230
SUB #lit10,Wn Wn = Wn — lit10 1 1 5-231
SUB Wh,#lit5,Wd wd = Wb — it5 1 1 5-232
SUB Whb,Ws,Wd Wd = Wb — Ws 1 1 5-233
suBB f{WREGHY |Destination = f— WREG — (C) 1 1 5-236
SUBB #itl0,Wn Wn = Wn - lit10 — (C) 1 1 5-237
SUBB Wh,#lit5,Wd wd = Wb — lit5 — (C) 1 1 5-238
SUBB Whb,Ws,Wd wd = Wb — Ws — (C) 1 1 5-239
SUBBR f{WREGHY |Destination = WREG — f — (C) 1 1 5-241
SUBBR Wh,#lit5,wd wad = lit5 — Wh — (C) 1 1 5-242
SUBBR Whb,Ws,Wd Wd = Ws — Wb — (C) 1 1 5-243
SUBR f{WREG}Y |Destination = WREG — f 1 1 5-245
SUBR Wh,#lit5,wd wd = it5 — Wh 1 1 5-246
SUBR Wb,Ws,Wd wd = Ws — Wb 1 1 5-247
ZE Ws,Wnd Wnd = zero-extended Ws 1 1 5-264

Note 1: When the optional {, WREG} operand is specified, the destination of the instruction is
WREG. When {,WREG} is not specified, the destination of the instruction is the file

register f.

The divide instructions must be preceded with a “REPEAT #17” instruction, such that
they are executed 18 consecutive times.

DS70157B-page 3-4

Preliminary

© 2005 Microchip Technology Inc.

Section 3. Instruction Set Overview

Table 3-4: Logic Instructions

Assembly Syntax Description Words |Cycles | Page #
AND f{,WREG}seeNote) |pastination = f . AND. WREG 1 1 5-19
AND #lit10,wWn Whn = [it10 .AND. Wn 1 1 5-20
AND Wb, #lit5,wd wd = Wh .AND. lit5 1 1 5-21
AND Wb,Ws,wd wd = Wh .AND. Ws 1 1 5-22
CLR f f = 0x0000 1 1 5-75
CLR WREG WREG = 0x0000 1 1 5-75
CLR wd Wd = 0x0000 1 1 5-76
COM f{WREG}seeNote) |pegtination = 1 1 5-80
COM Ws,wd wd = Ws 1 1 5-81
IOR f { WREG}See Note) | pastination = f .IOR. WREG 1 1 5-128
IOR #1it10,Wn Whn = [it10 .IOR. Wn 1 1 5-129
IOR Wh,#lit5,Wd wd = Wb .IOR. lit5 1 1 5-130
IOR Wh,Ws,Wd wd = Wb .IOR. Ws 1 1 5-131
NEG f{WREG})eeNote) |pegtination = f+ 1 1 1 5-181
NEG Ws,Wd wd=Ws +1 1 1 5-182
SETM f f = OXFFFF 1 1 5-221
SETM WREG WREG = OXFFFF 1 1 5-221
SETM Wd Wwd = OXFFFF 1 1 5-222
XOR f{WREG}seeNote) |pagtination = f .XOR. WREG 1 1 5-259
XOR #litl0,Wn Whn = [it10 .XOR. Wn 1 1 5-260
XOR Wh#lit5,wd Wwd = Wb .XOR. Iit5 1 1 5-261
XOR Wh,Ws,wd wd = Wh .XOR. Ws 1 1 5-262

Note: When the optional {, WREG} operand is specified, the destination of the instruction is
WREG. When {,WREG} is not specified, the destination of the instruction is the file
register f.

o
<
@
<.
@
=

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 3-5

dsPIC30F/33F Programmer’s Reference Manual

Table 3-5: Rotate/Shift Instructions
Assembly Syntax Description Words | Cycles | Page #
ASR f{WREG}seeNote) |pestination = arithmetic right shift f 1 1 5-24
ASR Ws,Wd Wd = arithmetic right shift Ws 1 1 5-25
ASR Wb, #lit4,Wnd Wnd = arithmetic right shift Wb by lit4 1 1 5-27
ASR Wb,Wns,Wnd Wnd = arithmetic right shift Wb by Wns 1 1 5-28
LSR f{WREG}seeNote) | pegtination = logical right shift f 1 1 5-136
LSR Ws,Wd Wd = logical right shift Ws 1 1 5-137
LSR Wb, #lit4, Wnd Wnd = logical right shift Wb by lit4 1 1 5-139
LSR Wb,Wns,Wnd Wnd = logical right shift Wb by Wns 1 1 5-140
RLC f{WREG}seeNote) |pegtination = rotate left through Carry f 1 1 5-204
RLC Ws,Wd Wd = rotate left through Carry Ws 1 1 5-205
RLNC f{WREG})s€eeNote) |pastination = rotate left (no Carry) f 1 1 5-207
RLNC Ws,Wd Wd = rotate left (no Carry) Ws 1 1 5-208
RRC f{WREG}seeNote) |pestination = rotate right through Carry f | 1 1 5-210
RRC Ws,Wd Wd = rotate right through Carry Ws 1 1 5-211
RRNC f{WREG})s€eeNote) |pastination = rotate right (no Carry) f 1 1 5-213
RRNC Ws,wWd Wd = rotate right (no Carry) Ws 1 1 5-214
SL f {{ WREG}S€e Note) | pestination = left shift f 1 1 5-225
SL Ws,Wd Wd = left shift Ws 1 1 5-226
SL Wb, #lit4,Wnd Wnd = left shift Wb by lit4 1 1 5-228
SL Wb,Wns,Wnd Wnd = left shift Wb by Wns 1 1 5-229
Note: When the optional {, WREG} operand is specified, the destination of the instruction is

WREG. When {,WREG} is not specified, the destination of the instruction is the file
register f.

DS70157B-page 3-6 Prelimin ary © 2005 Microchip Technology Inc.

Section 3. Instruction Set Overview

Table 3-6: Bit Instructions
Assembly Syntax Description Words | Cycles | Page #

BCLR f,#bit4 Bit clear f 1 1 5-29
BCLR Ws #bit4 Bit clear Ws 1 1 5-30
BSET f,#bit4 Bit set f 1 1 5-54
BSET Ws, #bitd Bit set Ws 1 1 5-55
BSW.C Ws,Wb Write C bit to Ws<Wb> 1 1 5-56
BSW.Z Ws,Whb Write Z bit to Ws<Wb> 1 1 5-56
BTG f,#bit4 Bit toggle f 1 1 5-58
BTG Ws #bit4 Bit toggle Ws 1 1 5-59
BTST f,#bit4 Bit test f 1 1 5-67
BTST.C Ws #bit4 Bit test Ws to C 1 1 5-68
BTST.Z Ws, #bit4 Bit test Ws to Z 1 1 5-68
BTST.C Ws,Wb Bit test Ws<Wb>to C 1 1 5-69
BTST.Z Ws,Wb Bit test Ws<Wb> to Z 1 1 5-69
BTSTS f #bit4 Bit test f then set f 1 1 5-71
BTSTS.C WSs,#bit4 Bit test Ws to C then set Ws 1 1 5-72
BTSTS.Z Ws,#bit4 Bit test Ws to Z then set Ws 1 1 5-72
FBCL Ws,Wnd Find bit change from left (MSb) side 1 1 5-116
FF1L Ws,Wnd Find first one from left (MSb) side 1 1 5-118
FF1R Ws,Wnd Find first one from right (LSb) side 1 1 5-120

o
<
@
<.
@
=

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 3-7

dsPIC30F/33F Programmer’s Reference Manual

Table 3-7: Compare/Skip Instructions
Assembly Syntax Description Words |Cycles(eeNote)| page #

BTSC f.#bit4 Bit test f, skip if clear 1 1(2o0r3) 5-60
BTSC Ws, #bit4 |Bit test Ws, skip if clear 1 1(2o0r3) 5-62
BTSS f #bit4 Bit test f, skip if set 1 1(2o0r3) 5-64
BTSS Ws,#bit4 |Bit test Ws, skip if set 1 1(2o0r3) 5-65
CP f Compare (f — WREG) 1 1 5-82
CP Whb,#lit5 |Compare (Wb — lit5) 1 1 5-83
CP Whb,Ws Compare (Wb — Ws) 1 1 5-84
CPO f Compare (f — 0x0000) 1 1 5-85
CPO Ws Compare (Ws — 0x0000) 1 1 5-86
CPB f Compare with Borrow (f - WREG — E) 1 1 5-87
CPB Wb, #lit5 |Compare with Borrow (Wb — lit5 — E) 1 1 5-88
CPB Wb,Ws Compare with Borrow (Wb — Ws — E) 1 1 5-89
CPSEQ Wb, Wn |Compare (Wb —Wn), skip if = 1 1(2or3) 5-91
CPSGT Wb, Wn [Compare (Wb —Wn), skip if > 1 1(2o0r3) 5-92
CPSLT Wb, Wn [Compare (Wb —Wn), skip if < 1 1(2o0r3) 5-93
CPSNE Wb, Wn [Compare (Wb —Wn), skip if # 1 1(2or3) 5-94

Note: Conditional skip instructions execute in 1 cycle if the skip is not taken, 2 cycles if the skip
is taken over a one-word instruction and 3 cycles if the skip is taken over a two-word
instruction.

DS70157B-page 3-8 Prelimin ary © 2005 Microchip Technology Inc.

Section 3. Instruction Set Overview

Table 3-8: Program Flow Instructions
Assembly Syntax Description Words | Cycles |Page #

BRA Expr Branch unconditionally 1 2 5-31

BRA Wn Computed branch 1 2 5-32

BRA C,Expr Branch if Carry (no Borrow) 1 1 (2)(1) 5-33

BRA GE,Expr Branch if greater than or equal 1 1 (2)(1) 5-35

BRA GEU,Expr Branch if unsigned greater than or equal 1 1 (2)(1) 5-36

BRA GT,Expr Branch if greater than 1 120 | 537

BRA GTU,Expr Branch if unsigned greater than 1 1 (2)(1) 5-38

BRA LE,Expr Branch if less than or equal 1 1 (2)(1) 5-39

BRA LEU,Expr Branch if unsigned less than or equal 1 1 (2)(1) 5-40

BRA LT,Expr Branch if less than 1 120 | 541

BRA LTU,Expr Branch if unsigned less than 1 1 (2)(1) 5-42

BRA N,Expr Branch if Negative 1 12D | 543

BRA NC,Expr Branch if not Carry (Borrow) 1 1 (2)(1) 5-44

BRA NN, Expr Branch if not Negative 1 120 | 5-45

BRA NOV,Expr Branch if not Overflow 1 12D | 5-46

BRA NZ,Expr Branch if not Zero 1 12D | 547

BRA OA,Expr Branch if Accumulator A Overflow 1 1 (2)(1) 5-48

BRA OB,Expr Branch if Accumulator B Overflow 1 120 | 5-49

BRA OV,Expr Branch if Overflow 1 1(2)® | 550

BRA SA Expr Branch if Accumulator A Saturate 1 1 (2)(1) 5-51

BRA SB,Expr Branch if Accumulator B Saturate 1 1 (2)(1) 5-52

BRA Z,Expr Branch if Zero 1 120 | 5-53 e
CALL Expr Call subroutine 2 2 5-73 é
CALL Wn Call indirect subroutine 1 2 5-74 g
DO #lit14,Expr I_Do code through PC + Expr, (litl4 + 1) 2 2 5-107 g

times

DO Whn,Expr Do code through PC+Expr, (Wn + 1) times 2 2 5-109

GOTO Expr Go to address 2 2 5-122

GOTO Wn Go to address indirectly 1 2 5-123

RCALL Expr Relative call 1 2 5-195

RCALL Wn Computed call 1 2 5-196

REPEAT #lit14 Repeat next instruction (lit14 + 1) times 1 1 5-197

REPEAT Wn Repeat next instruction (Wn + 1) times 1 1 5-198

RETFIE Return from interrupt enable 1 3 (2)(2) 5-201

RETLW #lit10,Wn Return with lit10 in Wn 1 3(2)®@ | 5-202

RETURN Return from subroutine 1 3(2)@ | 5-203

Note 1: Conditional branch instructions execute in 1 cycle if the branch is not taken, or 2 cycles
if the branch is taken.
2: RETURN instructions execute in 3 cycles, but if an exception is pending, they execute in
2 cycles.

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 3-9

dsPIC30F/33F Programmer’s Reference Manual

Table 3-9: Shadow/Stack Instructions
Assembly Syntax Description Words | Cycles | Page #
LNK #lit14 Link Frame Pointer 1 1 5-135
POP f POP TOS to f 1 1 5-186
POP wd POP TOS to Wd 1 1 5-187
POP.D Wnd Double POP from TOS to Wnd:Wnd + 1 1 2 5-188
POP.S POP shadow registers 1 1 5-189
PUSH f PUSH fto TOS 1 1 5-190
PUSH Ws PUSH Ws to TOS 1 1 5-191
PUSH.D Wns PUSH double Wns:Wns + 1 to TOS 1 2 5-192
PUSH.S PUSH shadow registers 1 1 5-193
ULNK Unlink Frame Pointer 1 1 5-258
Table 3-10: Control Instructions
Assembly Syntax Description Words | Cycles | Page #

CLRWDT Clear Watchdog Timer 1 1 5-79
DisI #lit14 Disable interrupts for (litl4 + 1) instruction cycles 1 1 5-100
NOP No operation 1 1 5-184
NOPR No operation 1 1 5-185
PWRSAV #litl Enter Power-saving mode litl 1 1 5-194
Reset Software device Reset 1 1 5-200
Table 3-11: DSP Instructions

Assembly Syntax Description Words |Cycles|Page #
ADD Acc Add accumulators 1 1 5-11
ADD Ws, #Slit4,Acc 16-bit signed add to Acc 1 1 5-12
CLR Acc,Wx,Wxd,Wy,Wyd,AWB Clear Acc 1 1 5-77
ED Wm*Wm,Acc, Wx,Wy,Wxd Euclidean distance 1 1 5-111

(no accumulate)

EDAC Wm*Wm,Acc, Wx,Wy,Wxd Euclidean distance 1 1 5-113
LAC Ws #Slit4,Acc Load Acc 1 1 5-133
MAC Wm*Wn,Acc, Wx,Wxd, Wy, Multiply and accumulate 1 1 5-141

Wyd,AWB
MAC Wm*Wm,Acc,Wx,Wxd,Wy,Wyd | Square and accumulate 1 1 5-143
MOVSAC Acc,Wx,Wxd,Wy,Wyd,AWB Move Wx to Wxd and Wy to Wyd 1 1 5-159
MPY Wm*Wn,Acc, Wx,Wxd,Wy,Wyd | Multiply Wn by Wm to Acc 1 1 5-161
MPY Wm*Wm,Acc, Wx,Wxd,Wy,Wyd | Square to Acc 1 1 5-163
MPY.N Wm*Wn,Acc, Wx,Wxd,Wy,Wyd |-(Multiply Wn by Wm) to Acc 1 1 5-165
MSC Wm*Wn,Acc, Wx,Wxd, Wy, Multiply and subtract from Acc 1 1 5-167

Wyd,AWB
NEG Acc Negate Acc 1 1 5-183
SAC Acc #Slit4,Wd Store Acc 1 1 5-216
SAC.R Acc #Slit4,Wd Store rounded Acc 1 1 5-218
SFTAC Acc #Slit6 Arithmetic shift Acc by Slit6 1 1 5-223
SFTAC Acc,Wn Arithmetic shift Acc by (Wn) 1 1 5-224
SUB Acc Subtract accumulators 1 1 5-235

DS70157B-page 3-10

Preliminary

© 2005 Microchip Technology Inc.

MICROCHIP
Section 4. I nstruction Set Details

HIGHLIGHTS

This section of the manual contains the following major topics:

4.1 Data AdAreSSING MOUES.uueiiee ettt e ettt e et et e e s e e see e e e e e e aneeeeaeaaan
4.2 Program AdAreSSing MOUEScciiiiiiiiie it eeetiee ettt e e e e s eiaeeeaaaan
4.3 INSTIUCHON SEAIIS....ceiiiiiiiiieie ettt
A Y (N @] o 1= T = 1o [PPSR
4.5 WOrd MOVE OPEIALIONS ...ccceuetiiieeiiatieiee e e ettt ee e e e ettt e e e s e ebe et e e e s e neeeeaaesanbeeeeeeaannneeaanan

4.6 Using 10-bit Literal Operands
4.7 Software Stack Pointer and Frame Pointer
4.8 Conditional Branch INSIIUCHIONScc.uuiiiiiiiiiie et
49 ZStatuS Bit...oooovvviviiiiiiiiiiiie e

4,10 Assigned Working Register Usage
I D 1] I o = W 0] 0 F= £ PSSR
4,12 ACCUMUIAIOE USBQE.eeeiii e ieiiiiie e et ee e ettt e e e e ettt e e e s ettt e e e e e e et e e e e e annbeeeeeeaannaeeeaeaan
4,13 ACCUMUIALOT ACCESSuiiiiiiiiiiiiiiiiiie et ee et et ee e e e e e e e e e es e s e s st e ab e aaar e e e reeeeeaaeaeaaaaeeeenanaannn
4.14 DSP MAC INSLIUCHONS ...cottiiiiiiiieiitie ettt ettt e st sibee e s nbe e e s e e e neee
4.15 DSP AcCUMUIALOr INSITUCTIONS .cc.uvviiiiiie ittt
4,16 Scaling Data with the FBCL INStrUCIONvvviiiiiiiiiiice e
4.17 Normalizing the Accumulator with the FBCL INStrUCtIONooociiiieiiiiieeeerieeeee 4-39

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 4-1

dsPIC30F/33F Programmer’s Reference Manual

4.1 Data Addressing Modes

The dsPIC30F/33F supports three native Addressing modes for accessing data memory, along
with several forms of immediate addressing. Data accesses may be performed using file register,
register direct or register indirect addressing, and immediate addressing allows a fixed value to
be used by the instruction.

File register addressing provides the ability to operate on data stored in the lower 8K of data
memory (Near RAM), and also move data between the working registers and the entire 64K data
space. Register direct addressing is used to access the 16 memory mapped working registers,
WO:W15. Register indirect addressing is used to efficiently operate on data stored in the entire
64K data space, using the contents of the working registers as an effective address. Immediate
addressing does not access data memory, but provides the ability to use a constant value as an
instruction operand. The address range of each mode is summarized in Table 4-1.

Table 4-1: dsPIC30F/33F Addressing Modes
Addressing Mode Address Range
File Register 0x0000-0x1FFF (see Note)
Register Direct 0x0000-0x001F (working register array WO0:W15)
Register Indirect 0x0000-0xFFFF
Immediate N/A (constant value)

Note: The address range for the File Register MOV is 0x0000-0xFFFE.

411 File Register Addressing

File register addressing is used by instructions which use a predetermined data address as an
operand for the instruction. The majority of instructions that support file register addressing
provide access to the lower 8 Kbytes of data memory, which is called the Near RAM. However,
the MOV instruction provides access to all 64 Kbytes of memory using file register addressing.
This allows one to load data from any location in data memory to any working register, and store
the contents of any working register to any location in data memory. It should be noted that file
register addressing supports both byte and word accesses of data memory, with the exception
of the MOV instruction, which accesses all 64K of memory as words. Examples of file register
addressing are shown in Example 4-1.

Most instructions, which support file register addressing, perform an operation on the specified file
register and the default working register WREG (see Section 2.2.2 “Default Working Register
(WREG)"). If only one operand is supplied in the instruction, WREG is an implied operand and the
operation results are stored back to the file register. In these cases, the instruction is effectively a
read-modify-write instruction. However, when both the file register and WREG are specified in the
instruction, the operation results are stored in WREG and the contents of the file register are
unchanged. Sample instructions which show the interaction between the file register and WREG
are shown in Example 4-2.

Note: Instructions which support file register addressing use ‘f’ as an operand in the
instruction summary tables of Section 3. “Instruction Set Overview” .

DS70157B-page 4-2

Prelimi nary © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

Example 4-1:

File Register Addressing

DEC 0x1000

Before Instruction:
Data Memory 0x1000

After Instruction:
Data Memory 0x1000

MOV O0x27FE, WO

Before Instruction:
WO 0x5555
Data Memory O0x27FE

After Instruction:
WO 0x1234
Data Memory O0x27FE

; decrement data stored at 0x1000

0x5555

0x5554

; move data stored at 0x27FE to WO

0x1234

0x1234

Example 4-2:

File Register Addressing and WREG

AND 0x1000

Before Instruction:
WO (WREG) 0x332C
Data Memory 0x1000

After Instruction:
WO (WREG) 0x332C
Data Memory 0x1000

; AND 0x1000 with WREG, store to 0x1000

0x5555

0x1104

AND 0x1000, WREG ; AND 0x1000 with WREG, store to WREG

Before Instruction:
WO (WREG) = 0x332C
Data Memory 0x1000 = 0x5555

After Instruction:
WO (WREG) = 0x1104
Data Memory 0x1000 = 0x5555

© 2005 Microchip Technology Inc. Prelimi nary DS70157B-page 4-3

dsPIC30F/33F Programmer’s Reference Manual

4.1.2

Register Direct Addressing

Register direct addressing is used to access the contents of the 16 working registers (WO0:W15).
The Register Direct Addressing mode is fully orthogonal, which allows any working register to be
specified for any instruction that uses register direct addressing, and it supports both byte and
word accesses. Instructions which employ register direct addressing use the contents of the
specified working register as data to execute the instruction, so this Addressing mode is useful
only when data already resides in the working register core. Sample instructions which utilize
register direct addressing are shown in Example 4-3.

Another feature of register direct addressing is that it provides the ability for dynamic flow control.
Since variants of the DO and REPEAT instruction support register direct addressing, one may
generate flexible looping constructs using these instructions.

Note: Instructions which must use register direct addressing, use the symbols Wh, Whn,
Wns and Wnd in the summary tables of Section 3. “Instruction Set Overview”.
Commonly, register direct addressing may also be used when register indirect
addressing may be used. Instructions which use register indirect addressing, use
the symbols Wd and Ws in the summary tables of Section 3. “Instruction Set
Overview”.

Example 4-3: Register Direct Addressing

EXCH W2, W3 ; Exchange W2 and W3

Before Instruction:
w2 0x3499
W3 = 0x003D

After Instruction:
W2 = 0x003D
W3 = 0x3499

IOR #0x44, WO ; Inclusive-OR 0x44 and WO

Before Instruction:
WO = 0x9C2E

After Instruction:
WO = 0x9C6E

SL W6, W7, W8 ; Shift left Wé by W7, and store to W8

Before Instruction:
W6 = 0x000C
W7 = 0x0008
W8 = 0x1234

After Instruction:
W6 = 0x000C
w7 0x0008
W8 = 0x0CO0O0

DS70157B-page 4-4

Prelimi nary © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

4.1.3 Register Indirect Addressing

Register indirect addressing is used to access any location in data memory by treating the
contents of a working register as an Effective Address (EA) to data memory. Essentially, the
contents of the working register become a pointer to the location in data memory which is to be
accessed by the instruction.

This Addressing mode is powerful, because it also allows one to modify the contents of the
working register, either before or after the data access is made, by incrementing or decrementing
the EA. By modifying the EA in the same cycle that an operation is being performed, register
indirect addressing allows for the efficient processing of data that is stored sequentially in
memory. The modes of indirect addressing supported by the dsPIC30F/dsPIC33F are shown in

Table 4-2.
Table 4-2: Indirect Addressing Modes
Function Function
Indirect Mode Syntax (Byte (Word Description
Instruction) Instruction)
No Modification [Wn] EA =[Wn] EA =[Wn] The contents of Wn forms the
EA.
Pre-Increment [++Wn] | EA=[Wn+=1] | EA=[Wn +=2] | Wn s pre-incremented to form
the EA.
Pre-Decrement [--Wn] EA=[Wn-=1] | EA=[Wn-=2] | Wnis pre-decremented to form
the EA.

Post-Increment [Wn++] EA =[Wn]+=1 EA = [Wn]+=2 | The contents of Wn forms

the EA, then Wn is
post-incremented.
Post-Decrement [Wn--] EA=[Wn]-=1 | EA=[Wn]-=2 | The contents of Wn forms

the EA, then Wn is
post-decremented.

Register Offset | [Wn+Wb] | EA = [Wn + Wb] | EA = [Wn + Wb] | The sum of Wn and Wb forms
the EA. Wn and Wb are not
modified.

Table 4-2 shows that four Addressing modes modify the EA used in the instruction, and this
allows the following updates to be made to the working register: post-increment, post-decrement,
pre-increment and pre-decrement. Since all EAs must be given as byte addresses, support is
provided for Word mode instructions by scaling the EA update by 2. Namely, in Word mode,
pre/post-decrements subtract 2 from the EA stored in the working register, and
pre/post-increments add 2 to the EA. This feature ensures that after an EA modification is made,
the EA will point to the next adjacent word in memory. Example 4-4 shows how indirect
addressing may be used to update the EA.

Table 4-2 also shows that the Register Offset mode addresses data which is offset from a base
EA stored in a working register. This mode uses the contents of a second working register to form
the EA by adding the two specified working registers. This mode does not scale for Word mode
instructions, but offers the complete offset range of 64 Kbytes. Note that neither of the working
registers used to form the EA are modified. Example 4-5 shows how register offset indirect
addressing may be used to access data memory.

Note: The MoV with offset instructions (5-151 and 5-152) provides a literal addressing
offset ability to be used with indirect addressing. In these instructions, the EA is
formed by adding the contents of a working register to a signed 10-bit literal.
Example 4-6 shows how these instructions may be used to move data to and from
the working register array.

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 4-5

dsPIC30F/33F Programmer’s Reference Manual

Example 4-4: Indirect Addressing with Effective Address Update

MOV .B [WO++], [W13--]

Before Instruction:
WO = 0x2300
W1l3 = 0x2708

Data Memory 0x2300 =

Data Memory 0x2708

After Instruction:
W0 = 0x2301
W13 = 0x2707
Data Memory 0x2300
Data Memory 0x2708

i

7

0x7783
0x904E

0x7783
0x9083

ADD W1, [--W51, [++W8] ;

Before Instruction:
W1l = 0x0800
W5 = 0x2200
W8 = 0x2400

Data Memory O0x21FE =

Data Memory 0x2402

After Instruction:
Wl = 0x0800
W5 = O0x21FE
W8 = 0x2402

Data Memory O0x21FE =

Data Memory 0x2402

7

0x7783
OxAACC

0x7783
O0x7F83

byte move

post-inc WO,

pre-dec W5,

add W1 to

[Wo]

[ws],

post-dec W13

pre-inc W8

to [W13]

store in [W8]

DS70157B-page 4-6

Preliminary

© 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

Example 4-5: Indirect Addressing with Register Offset

MOV.B [WO+W1], [W7++] ; byte move [WO+W1l] to W7, post-inc W7

Before Instruction:
WO = 0x2300
W1l = OxO1lFE
W7 = 0x1000
Data Memory O0x24FE = 0x7783
Data Memory 0x1000 = 0x11DC

After Instruction:
WO = 0x2300
W1l = OxO1lFE
W7 = 0x1001
Data Memory O0x24FE = 0x7783
Data Memory 0x1000 = 0x1183

LAC [WO+W8], A ; load ACCA with [WO0+W8]
; (sign-extend and zero-backfill)

Before Instruction:
WO = 0x2344
W8 = 0x0008
ACCA = 0x00 7877 9321
Data Memory 0x234C = O0xE290

After Instruction:
WO = 0x2344
W8 = 0x0008
ACCA = OxFF E290 0000
Data Memory 0x234C = O0xE290

Example 4-6: Move with Literal Offset Instructions

MOV [WO+0x20], W1 ; move [W0+0x20] to W1

Before Instruction:
WO = 0x1200
Wl = Ox01FE
Data Memory 0x1220 = 0xFD27

After Instruction:
WO = 0x1200
Wl = OxFD27
Data Memory 0x1220 = OxFD27

MOV W4, [W8-0x300] ; move W4 to [W8-0x300]

Before Instruction:
W4 = 0x3411
W8 = 0x2944
Data Memory 0x2644 = 0xCB98

After Instruction:
W4 = 0x3411
W8 0x2944
Data Memory 0x2644 = 0x3411

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 4-7

dsPIC30F/33F Programmer’s Reference Manual

4131

4.1.3.2

4133

Register Indirect Addressing and the Instruction Set

The Addressing modes presented in Table 4-2 demonstrate the Indirect Addressing mode
capability of the dsPIC30F/33F. Due to operation encoding and functional considerations, not
every instruction which supports indirect addressing supports all modes shown in Table 4-2. The
majority of instructions which use indirect addressing support the No Modify, Pre-Increment,
Pre-Decrement, Post-Increment and Post-Decrement Addressing modes. The MOV instructions,
and several accumulator-based DSP instructions, are also capable of using the Register Offset
Addressing mode.

Note: Instructions which use register indirect addressing use the operand symbols Wd

and Ws in the summary tables of Section 3. “Instruction Set Overview”.

DSP MAC Indirect Addressing Modes

A special class of Indirect Addressing modes is utilized by the DSP MAC instructions. As is
described later in Section 4.14 “DSP MAC Instructions”, the DSP MAC class of instructions are
capable of performing two fetches from memory using effective addressing. Since DSP
algorithms frequently demand a broader range of address updates, the Addressing modes
offered by the DSP MAC instructions provide greater range in the size of the effective address
update which may be made. Table 4-3 shows that both X and Y prefetches support

Post- Increment and Post-Decrement Addressing modes, with updates of 2, 4 and 6 bytes. Since
DSP instructions only execute in Word mode, no provisions are made for odd sized EA updates.

Table 4-3: DSP MAC Indirect Addressing Modes

Addressing Mode X Memory Y Memory
Indirect with no modification EA = [WX] EA = [Wy]
Indirect with Post-Increment by 2 EA=[Wx]+=2 EA=[Wy]+=2
Indirect with Post-Increment by 4 EA=[Wx]+=4 EA=[Wy]+=4
Indirect with Post-Increment by 6 EA=[Wx]+=6 EA=[Wy]+=6
Indirect with Post-Decrement by 2 EA=[Wx]-=2 EA=[Wy]-=2
Indirect with Post-Decrement by 4 EA=[Wx]-=4 EA=[Wy]-=4
Indirect with Post-Decrement by 6 EA=[Wx]-=6 EA=[Wy]-=6
Indirect with Register Offset EA = [W9 + W12] EA = [W1l1 + W12]

Note: As described in Section 4.14 “DSP MAC Instructions”, only W8 and W9 may be
used to access X Memory, and only W10 and W11 may be used to access Y

Memory.

Modulo and Bit-Reversed Addressing Modes

The dsPIC30F/33F architecture provides support for two special Register Indirect Addressing
modes, which are commonly used to implement DSP algorithms. Modulo (or circular) addressing
provides an automated means to support circular data buffers in X and/or Y memory. Modulo
buffers remove the need for software to perform address boundary checks, which can improve
the performance of certain algorithms. Similarly, bit-reversed addressing allows one to access
the elements of a buffer in a nonlinear fashion. This Addressing mode simplifies data re-ordering
for radix-2 FFT algorithms and provides a significant reduction in FFT processing time.

Both of these Addressing modes are powerful features of the dsPIC30F and dsPIC33F architec-
tures, which can be exploited by any instruction that uses indirect addressing. Refer to the
dsPIC30F Family Reference Manual (DS70046) for details on using modulo and bit-reversed
addressing.

DS70157B-page 4-8

Prelimi nary © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

41.4 Immediate Addressing

In immediate addressing, the instruction encoding contains a predefined constant operand,
which is used by the instruction. This Addressing mode may be used independently, but it is more
frequently combined with the File Register, Direct and Indirect Addressing modes. The size of
the immediate operand which may be used varies with the instruction type. Constants of size
1-bit (#litl), 4-bit (#bit4, #lit4 and #Slit4), 5-bit (#lit5), 6-bit (#Slit6), 8-bit (#it8), 10-bit (#1it10 and
#Slit10), 14-bit (#lit14) and 16-bit (#1it16) may be used. Constants may be signed or unsigned
and the symbols #Slit4, #Slit6 and #Slit10 designate a signed constant. All other immediate
constants are unsigned. Table 4-4 shows the usage of each immediate operand in the instruction

set.
Table 4-4: Immediate Operands in the Instruction Set
Operand Instruction Usage

#litl PWRSAV

#bit4 BCLR, BSET, BTG, BTSC, BTSS, BTST, BTST.C, BTST. Z, BTSTS, BTSTS.C,
BTSTS.Z

#lit4 ASR, LSR, SL

#Slit4 ADD, LAC, SAC, SAC.R

#lit5 ADD, ADDC, AND, CP, CPB, IOR, MUL. SU, MUL. UU, SUB, SUBB, SUBBR, SUBR,
XOR

#SIit6 SFTAC

#lit8 MOV.B

#lit10 ADD, ADDC, AND, CP, CPB, IOR, RETLW, SUB, SUBB, XOR

#SIit10 MOV

#lit14 DISTI, DO, LNK, REPEAT

#lit16 MOV

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 4-9

dsPIC30F/33F Programmer’s Reference Manual

The syntax for immediate addressing requires that the number sign (#) must immediately
precede the constant operand value. The “#” symbol indicates to the assembler that the quantity
is a constant. If an out-of-range constant is used with an instruction, the assembler will generate
an error. Several examples of immediate addressing are shown in Example 4-7.

Example 4-7: Immediate Addressing

PWRSAV #1 ; Enter IDLE mode

ADD.B #0x10, WO ; Add 0x10 to WO (byte mode)

Before Instruction:
WO = 0x12A9

After Instruction:
WO = 0x12B9

XOR WO, #1, [Wl++] ; Exclusive-OR WO and 0x1
; Store the result to [W1]
; Post-increment W1

Before Instruction:
W0 = OxXFFFF
Wl = 0x0890
Data Memory 0x0890 = 0x0032

After Instruction:
WO = OxFFFF
Wl = 0x0892
Data Memory 0x0890 = OxXFFFE

4.1.5 Data Addressing Mode Tree

The Data Addressing modes of the dsPIC30F and dsPIC33F are summarized in Figure 4-1.

Figure 4-1: Data Addressing Mode Tree

Immediate
File Register No Madification
Basic] Pre-Increment
Direct
- Pre-Decrement
Indirect Post-Increment
Post-Decrement
Data Addressing Modes Literal Offset
Register Offset
Direct
DSP MAC No Modification
Post-Increment (2, 4 and 6)
Indirect Post-Decrement (2, 4 and 6)
Register Offset

DS70157B-page 4-10 Prelimin ary © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

4.2 Program Addressing Modes

Both the dsPIC30F and dsPIC33F have a 23-bit Program Counter (PC). The PC addresses the
24-bit wide program memory to fetch instructions for execution, and it may be loaded in several
ways. For byte compatibility with the table read and table write instructions, each instruction word
consumes two locations in program memory. This means that during serial execution, the PC is
loaded with PC + 2.

Several methods may be used to modify the PC in a non-sequential manner, and both absolute
and relative changes may be made to the PC. The change to the PC may be from an immediate
value encoded in the instruction, or a dynamic value contained in a working register. When DO
looping is active, the PC is loaded with the address stored in the DOSTART register, after the
instruction at the DOEND address is executed. For exception handling, the PC is loaded with the
address of the exception handler, which is stored in the interrupt vector table. When required, the
software stack is used to return scope to the foreground process from where the change in
program flow occurred.

Table 4-5 summarizes the instructions which modify the PC. When performing function calls, it is
recommended that RCALL be used instead of CALL, since RCALL only consumes 1 word of
program memory.

Table 4-5: Methods of Modifying Program Flow

Condition/Instruction

PC Maodification

Software Stack Usage

(Branch Conditionally)

PC = PC + 2 * Slit16 (condition true)

Sequential Execution PC=PC+2 None
BRA Expr® PC = PC + 2*Slit16 None
(Branch Unconditionally)

BRA Condition, Expr(® PC = PC + 2 (condition false) None

(Unconditional Indirect Jump)

cALL Expr? PC =lit23 PC + 4 is PUSHed on
(Call Subroutine) the stack®

CALL Wn PC =Wn PC + 2 is PUSHed on
(Call Subroutine Indirect) the stack®

GgoTo Expr® PC =lit23 None

(Unconditional Jump)

GOTO Wn PC =Wn None

RCALL Expr(®
(Relative Call)

PC =PC + 2 * Slit16

PC + 2 is PUSHed on
the stack®

RCALL Wn
(Computed Relative Call)

PC =PC +2*Wn

PC + 2 is PUSHed on
the stack®

Exception Handling

(read from vector table)

PC = address of the exception handler

PC + 2 is PUSHed on
the stack®

(DO Looping)

PC = Target REPEAT instruction |PC not modified (if REPEAT active) None
(REPEAT Looping)
PC = DOEND address PC = DOSTART (if DO active) None

Note 1: For BRA, CALL and GOTO, the Expr may be a label, absolute address, or expression,

which is resolved by the linker to a 16-bit or 23-bit value (Slit16 or lit23). See
Section 5. “Instruction Descriptions” for details.

2: After CALL or RCALL is executed, RETURN or RETLW will POP the Top-of-Stack (TOS)

back into the PC.

3: After an exception is processed, RETFIE will POP the Top-of-Stack (TOS) back into the

PC.

© 2005 Microchip Technology Inc.

Preliminary

DS70157B-page 4-11

dsPIC30F/33F Programmer’s Reference Manual

4.3 Instruction Stalls

431

In order to maximize the data space EA calculation and operand fetch time, the X data space
read and write accesses are partially pipelined. A consequence of this pipelining is that address
register data dependencies may arise between successive read and write operations using
common registers.

‘Read After Write’ (RAW) dependencies occur across instruction boundaries and are detected by
the hardware. An example of a RAW dependency would be a write operation that modifies W5,
followed by a read operation that uses W5 as an Address Pointer. The contents of W5 will not be
valid for the read operation until the earlier write completes. This problem is resolved by stalling
the instruction execution for one instruction cycle, which allows the write to complete before the
next read is started.

RAW Dependency Detection

During the instruction pre-decode, the core determines if any address register dependency is
imminent across an instruction boundary. The stall detection logic compares the W register (if
any) used for the destination EA of the instruction currently being executed with the W register
to be used by the source EA (if any) of the prefetched instruction. When a match between the
destination and source registers is identified, a set of rules are applied to decide whether or not
to stall the instruction by one cycle. Table 4-6 lists various RAW conditions which cause an
instruction execution stall.

Table 4-6: Raw Dependency Rules (Detection By Hardware)
Destination Source Address Mode Stall Examples
Address Mode Using Wn Using Wn Required? (Wn = W2)
Direct Direct No Stall |ADD.W W0, W1, W2
MOV.W W2, W3
Indirect Direct No Stall |ADD.W w0, W1, [W2]
MOV.W W2, W3
Indirect Indirect No Stall |ADD.W w0, W1, [W2]
MOV.W [W2], W3
Indirect Indirect with No Stall |ADD.wW wWo, W1, [W2]
pre/post-modification MOV.W [W2++], W3
Indirect with Direct No Stall |ADD.W W0, W1, [W2++]
pre/post-modification MOV.W W2, W3
Direct Indirect stall® |app.w wWo, Wi, w2
MOV.W [W2], W3
Direct Indirect with stal® |appD.w w0, W1, W2
pre/post-modification MOV.W [W2++], W3
Indirect Indirect stal® |app.w wo, wi, [w2]®@
Mov.w [w2], w3®@
Indirect Indirect with stal® |app.w wo, wi, [w2]®@
pre/post-modification MOV.W [W2++], w3@
Indirect with Indirect Stal® |aDD.W WO, W1, [W2++]
pre/post-modification MOV.W [wW2], W3
Indirect with Indirect with Stall® |aDD.W WO, W1, [W2++]
pre/post-modification pre/post-modification MOV.W [W2++], W3

Note 1: When stalls are detected, one cycle is added to the instruction execution time.
2. For these examples, the contents of W2 = the mapped address of W2 (0x0004).

DS70157B-page 4-12

Prelimin ary © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

4.3.2 Instruction Stalls and Exceptions

In order to maintain deterministic operation, instruction stalls are allowed to happen, even if they
occur immediately prior to exception processing.

4.3.3 Instruction Stalls and Instructions that Change Program Flow
CALL and RCALL write to the stack using W15 and may, therefore, be subject to an instruction
stall if the source read of the subsequent instruction uses W15.
GOTO, RETFIE and RETURN instructions are never subject to an instruction stall because they
do not perform write operations to the working registers.

434 Instruction Stalls and DO/REPEAT Loops

Instructions operating in a DO or REPEAT loop are subject to instruction stalls, just like any other
instruction. Stalls may occur on loop entry, loop exit and also during loop processing.

4.3.5 Instruction Stalls and PSV

Instructions operating in PSV address space are subject to instruction stalls, just like any other
instruction. Should a data dependency be detected in the instruction immediately following the
PSV data access, the second cycle of the instruction will initiate a stall. Should a data
dependency be detected in the instruction immediately before the PSV data access, the last
cycle of the previous instruction will initiate a stall.

Note: Refer to the dsPIC30F Family Reference Manual (DS70046) for more detailed infor-
mation about RAW instruction stalls.

4.4 Byte Operations

Since the data memory is byte addressable, most of the base instructions may operate in either

Byte mode or Word mode. When these instructions operate in Byte mode, the following rules

apply:

« all direct working register references use the Least Significant Byte of the 16-bit working
register and leave the Most Significant Byte (MSB) unchanged

« all indirect working register references use the data byte specified by the 16-bit address
stored in the working register

« all file register references use the data byte specified by the byte address

« the STATUS Register is updated to reflect the result of the byte operation

It should be noted that data addresses are always represented as byte addresses. Additionally,
the native data format is little-endian, which means that words are stored with the Least
Significant Byte at the lower address, and the Most Significant Byte at the adjacent, higher
address (as shown in Figure 4-2). Example 4-8 shows sample byte move operations and
Example 4-9 shows sample byte math operations.

Note: Instructions which operate in Byte mode must use the “.b” or “.B” instruction
extension to specify a byte instruction. For example, the following two instructions
are valid forms of a byte clear operation:

CLR.b WO
CLR.B WO

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 4-13

dsPIC30F/33F Programmer’s Reference Manual

Example 4-8: Sample Byte Move Operations

MOV.B #0x30, WO ; move the literal byte 0x30 to WO

Before Instruction:
WO = 0x5555

After Instruction:
WO = 0x5530

MOV.B 0x1000, WO ; move the byte at 0x1000 to WO

Before Instruction:
WO = 0x5555
Data Memory 0x1000 = 0x1234

After Instruction:
WO = 0x5534
Data Memory 0x1000 = 0x1234

MOV.B W0, 0x1001 ; byte move WO to address 0x1001

Before Instruction:
WO = 0x1234
Data Memory 0x1000 = 0x5555

After Instruction:
WO = 0x1234
Data Memory 0x1000 = 0x3455

MOV.B WO, [Wl++] ; byte move WO to [W1l], then post-inc W1

Before Instruction:
WO = 0x1234
Wl = 0x1001
Data Memory 0x1000 = 0x5555

After Instruction:
WO = 0x1234
Wil 0x1002
Data Memory 0x1000 = 0x3455

DS70157B-page 4-14

Prelimi nary © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

Example 4-9: Sample Byte Math Operations

CLR.B [We--1] ; byte clear [W6], then post-dec W6

Before Instruction:
W6 = 0x1001
Data Memory 0x1000 = 0x5555

After Instruction:
W6 = 0x1000
Data Memory 0x1000 = 0x0055

SUB.B WO, #0x10, W1 ; byte subtract literal 0x10 from WO
; and store to W1

Before Instruction:
WO = 0x1234
W1l = OXFFFF

After Instruction:
WO = 0x1234
Wl = OxFF24

ADD.B WO, W1, [W2++] ; byte add WO and W1, store to [W2]
; and post-inc W2

Before Instruction:
WO = 0x1234
Wl = 0x5678
W2 = 0x1000
Data Memory 0x1000 = 0x5555

After Instruction:
WO 0x1234
Wl 0x5678
W2 = 0x1001
Data Memory 0x1000 = O0x55AC

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 4-15

dsPIC30F/33F Programmer’s Reference Manual

4.5 Word Move Operations

Even though the data space is byte addressable, all move operations made in Word mode must
be word-aligned. This means that for all source and destination operands, the Least Significant
address bit must be ‘0’. If a word move is made to or from an odd address, an address error
exception is generated. Likewise, all double words must be word-aligned. Figure 4-2 shows how
bytes and words may be aligned in data memory. Example 4-10 contains several legal word
move operations.

When an exception is generated due to a misaligned access, the exception is taken after the
instruction executes. If the illegal access occurs from a data read, the operation will be allowed
to complete, but the Least Significant bit of the source address will be cleared to force word align-
ment. If the illegal access occurs during a data write, the write will be inhibited. Example 4-11
contains several illegal word move operations.

Figure 4-2: Data Alignment in Memory

0x1001 b0 0x1000

0x1003 bl 0x1002

0x1007 b5 b4 0x1006

0x1009 b7 b6 0x1008

0x100B b8 0Ox100A
Legend:

b0 — byte stored at 0x1000

bl — byte stored at 0x1003

b3:b2 — word stored at 0x1005:1004 (b2 is LSB)

b7:b4 — double word stored at 0x1009:0x1006 (b4 is LSB)
b8 — byte stored at 0x100A

Note: Instructions which operate in Word mode are not required to use an instruction
extension. However, they may be specified with an optional “. w” or “. W” extension,
if desired. For example, the following instructions are valid forms of a word clear
operation:

CLR WO

CLR.w WO
CLR.W WO

DS70157B-page 4-16

Prelimin ary © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

Example 4-10: Legal Word Move Operations

MOV #0x30, WO ; move the literal word 0x30 to WO

Before Instruction:
W0 = 0x5555

After Instruction:
WO = 0x0030

MOV 0x1000, WO ; move the word at 0x1000 to WO

Before Instruction:
WO = 0x5555
Data Memory 0x1000 = 0x1234

After Instruction:
WO = 0x1234
Data Memory 0x1000 = 0x1234

MOV [WOl, [Wl++] ; word move [WO] to [W1],
; then post-inc W1

Before Instruction:
WO = 0x1234
Wl = 0x1000
Data Memory 0x1000 = 0x5555
Data Memory 0x1234 = OxAAAA

After Instruction:
WO = 0x1234
W1l = 0x1002
Data Memory 0x1000 = OxAAAA
Data Memory 0x1234 = OxAAAA

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 4-17

dsPIC30F/33F Programmer’s Reference Manual

Example 4-11: lllegal Word Move Operations

MOV 0x1001, WO ; move the word at 0x1001 to WO

Before Instruction:
WO = 0x5555
Data Memory 0x1000 = 0x1234
Data Memory 0x1002 = 0x5678

After Instruction:
WO = 0x1234
Data Memory 0x1000 = 0x1234
Data Memory 0x1002 = 0x5678

ADDRESS ERROR TRAP GENERATED
(source address is misaligned, so MOV is performed)

MOV W0, 0x1001 ; move WO to the word at 0x1001

Before Instruction:
WO = 0x1234
Data Memory 0x1000 = 0x5555
Data Memory 0x1002 = 0x6666

After Instruction:
WO = 0x1234
Data Memory 0x1000 = 0x5555
Data Memory 0x1002 = 0x6666

ADDRESS ERROR TRAP GENERATED

(destination address is misaligned, so MOV is not performed)

MOV [WOl, [Wl++] ; word move [WO0] to [W1],
; then post-inc Wl

Before Instruction:
W0 = 0x1235
Wl = 0x1000
Data Memory 0x1000 = 0x1234
Data Memory 0x1234 = OxAAAA
Data Memory 0x1236 = 0xBBBB

After Instruction:
WO = 0x1235
Wl = 0x1002
Data Memory 0x1000 = OxAAAA
Data Memory 0x1234 = OxAAAA
Data Memory 0x1236 = 0xBBBB

ADDRESS ERROR TRAP GENERATED
(source address is misaligned, so MOV is performed)

DS70157B-page 4-18 Prelimin ary © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

4.6 Using 10-bit Literal Operands

Several instructions which support Byte and Word mode have 10-bit operands. For byte
instructions, a 10-bit literal is too large to use. So when 10-bit literals are used in Byte mode, the
range of the operand must be reduced to 8 bits or the assembler will generate an error. Table 4-7
shows that the range of a 10-bit literal is 0:1023 in Word mode and 0:255 in Byte mode.

Instructions which employ 10-bit literals in Byte and Word mode are: ADD, ADDC, AND, IOR,
RETLW, SUB, SUBB and XOR. Example 4-12 shows how positive and negative literals are used
in Byte mode for the ADD instruction.

Table 4-7: 10-bit Literal Coding

Literal Value Word Mode Byte Mode
kk kkkk kkkk kkkk kkkk
0 00 0000 0000 0000 0000
1 00 0000 0001 0000 0001
2 00 0000 0010 0000 0010
127 00 0111 1111 0111 1111
128 00 1000 0000 1000 0000
255 00 1111 1111 1111 1111
256 01 0000 0000 N/A
512 10 0000 0000 N/A
1023 11 1111 1111 N/A

Example 4-12: Using 10-bit Literals For Byte Operands

ADD.B #0x80, WO ; add 128 (or -128) to WO

ADD.B #0x380, WO ; ERROR... Illegal syntax for byte mode
ADD.B #O0xFF, WO ; add 255 (or -1) to WO

ADD.B #0x3FF, WO ; ERROR... Illegal syntax for byte mode
ADD.B #0xF, WO ; add 15 to WO

ADD.B #0x7F, WO ; add 127 to WO

ADD.B #0x100, WO ; ERROR... Illegal syntax for byte mode

Note: Using a literal value greater than 127 in Byte mode is functionally identical to using
the equivalent negative two’s complement value, since the Most Significant bit of the
byte is set. When operating in Byte mode, the Assembler will accept either a positive
or negative literal value (i.e., #-10).

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 4-19

dsPIC30F/33F Programmer’s Reference Manual

4.7 Software Stack Pointer and Frame Pointer

4.7.1 Software Stack Pointer

Both the dsPIC30F and dsPIC33F feature a software stack which facilitates function calls and
exception handling. W15 is the default Stack Pointer (SP) and after any Reset, it is initialized to
0x0800. This ensures that the SP will point to valid RAM in all dsPIC30F and dsPIC33F devices
and permits stack availability for exceptions, which may occur before the SP is set by the user
software. The user may reprogram the SP during initialization to any location within data space.

The SP always points to the first available free word (Top-of-Stack) and fills the software stack,
working from lower addresses towards higher addresses. It pre-decrements for a stack POP
(read) and post-increments for a stack PUSH (write).

The software stack is manipulated using the PUSH and POP instructions. The PUSH and POP
instructions are the equivalent of a MOV instruction, with W15 used as the destination pointer. For
example, the contents of WO can be PUSHed onto the Top-of-Stack (TOS) by:

PUSH WO
This syntax is equivalent to
MOV WO, [W15++]
The contents of the TOS can be returned to WO by
POP WO
This syntax is equivalent to
MOV [--W15],WO0

During any CALL instruction, the PC is PUSHed onto the stack, such that when the subroutine
completes execution, program flow may resume from the correct location. When the PC is
PUSHed onto the stack, PC<15:0> is PUSHed onto the first available stack word, then
PC<22:16> is PUSHed. When PC<22:16> is PUSHed, the Most Significant 7 bits of the PC are
zero-extended before the PUSH is made, as shown in Figure 4-3. During exception processing,
the Most Significant 7 bits of the PC are concatenated with the lower byte of the STATUS register
(SRL) and IPL<3>, CORCON<3>. This allows the primary STATUS register contents and CPU
Interrupt Priority Level to be automatically preserved during interrupts.

| Note: In order to protect against misaligned stack accesses, W15<0> is always clear.

Figure 4-3: Stack Operation for CALL Instruction
0x0000
15 0
[72]
B
©
3 o
=
0 9
E § PC<15:0> <«—— W15 (before CALL)
9% 0%0 PC<22:16>
Ny
% %’ Top-of-Stack <««—— W15 (after CALL)
\J
OxFFFE
Note: For exceptions, the upper nine bits of the second PUSHed word contains
the SRL and IPL<3>.

DS70157B-page 4-20

Prelimi nary © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

4.7.2 Stack Pointer Example

Figure 4-4 through Figure 4-7 show how the software stack is modified for the code snippet
shown in Example 4-13. Figure 4-4 shows the software stack before the first PUSH has executed.
Note that the SP has the initialized value of 0x0800. Furthermore, the example loads Ox5A5A
and 0x3636 to W0 and W1, respectively. The stack is PUSHed for the first time in Figure 4-5 and
the value contained in WO is copied to TOS. W15 is automatically updated to point to the next
available stack location, and the new TOS is 0x0802. In Figure 4-6, the contents of W1 are
PUSHed onto the stack, and the new TOS becomes 0x0804. In Figure 4-7, the stack is POPped,
which copies the last PUSHed value (W1) to W3. The SP is decremented during the pOP
operation, and at the end of the example, the final TOS is 0x0802.

Example 4-13: Stack Pointer Usage

MOV #0x5A5A, WO ; Load WO with O0x5AS5A
MOV #0x3636, W1 ; Load W1 with 0x3636
PUSH WO ; Push WO to TOS (see Figure 4-5)
PUSH W1l ; Push W1 to TOS (see Figure 4-6)
POP W3 ; Pop TOS to W3 (see Figure 4-7)
Figure 4-4: Stack Pointer Before The First PUSH
0x0000
0x0800 <TOS> <«—— W15 (SP)
OxFFFE
WO = Ox5A5A
W1 = 0x3636
W15 = 0x0800
Figure 4-5: Stack Pointer After “PUSH W0” Instruction
0x0000
0x0800 5A5A
0x0802 <TOS> <—— W15 (SP)
OxFFFE
WO = Ox5A5A
W1 = 0x3636
W15 = 0x0802

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 4-21

dsPIC30F/33F Programmer’s Reference Manual

Figure 4-6: Stack Pointer After “PUSH W1” Instruction

0x0000

0x0800 5A5A
0x0802 3636
0x0804 <TOS> <<—— W15 (SP)

OXFFFE

WO = Ox5A5A
W1 = 0x3636
W15 = 0x0804

Figure 4-7: Stack Pointer After “POP W3” Instruction

0x0000

0x0800 5A5A
0x0802 <TOS> ~<—— W15 (SP)
0x0804

OXFFFE

WO = 0x5A5A
W1 = 0x3636
W3 = 0x3636
W15 = 0x0802

Note: The contents of 0x802, the new TOS, remain unchanged (0x3636).

4.7.3 Software Stack Frame Pointer

A Stack Frame is a user defined section of memory residing in the software stack. It is used to
allocate memory for temporary variables which a function uses, and one Stack Frame may be
created for each function. W14 is the default Stack Frame Pointer (FP) and it is initialized to
0x0000 on any Reset. If the Stack Frame Pointer is not used, W14 may be used like any other
working register.

The link (LNK) and unlink (ULNK) instructions provide Stack Frame functionality. The LNK
instruction is used to create a Stack Frame. It is used during a call sequence to adjust the SP,
such that the stack may be used to store temporary variables utilized by the called function. After
the function completes execution, the ULNK instruction is used to remove the Stack Frame cre-
ated by the LNK instruction. The LNK and ULNK instructions must always be used together to
avoid stack overflow.

DS70157B-page 4-22

Prelimi nary © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

4.7.4 Stack Frame Pointer Example

Figure 4-8 through Figure 4-10 show how a Stack Frame is created and removed for the code
snippet shown in Example 4-14. This example demonstrates how a Stack Frame operates and
is not indicative of the code generated by the dsPIC30F/33F compiler. Figure 4-8 shows the
stack condition at the beginning of the example, before any registers are PUSHed to the stack.
Here, W15 points to the first free stack location (TOS) and W14 points to a portion of stack
memory allocated for the routine that is currently executing.

Before calling the function “COMPUTE", the parameters of the function (WO, W1 and W2) are
PUSHed on the stack. After the “CALL COMPUTE” instruction is executed, the PC changes to the
address of “COMPUTE” and the return address of the function “TASKA” is placed on the stack
(Figure 4-9). Function “COMPUTE” then uses the “LNK #4” instruction to PUSH the calling
routine’s Frame Pointer value onto the stack and the new Frame Pointer will be set to point to the
current Stack Pointer. Then, the literal 4 is added to the Stack Pointer address in W15, which
reserves memory for two words of temporary data (Figure 4-10).

Inside the function “COMPUTE”, the FP is used to access the function parameters and temporary
(local) variables. [W14 + n] will access the temporary variables used by the routine and

[W14 — n] is used to access the parameters. At the end of the function, the ULNK instruction is
used to copy the Frame Pointer address to the Stack Pointer and then POP the calling subrou-
tine’s Frame Pointer back to the W14 register. The ULNK instruction returns the stack back to the
state shown in Figure 4-9.

A RETURN instruction will return to the code that called the subroutine. The calling code is
responsible for removing the parameters from the stack. The RETURN and POP instructions
restore the stack to the state shown in Figure 4-8.

Example 4-14: Frame Pointer Usage

TASKA:
PUSH WO ; Push parameter 1
PUSH W1 ; Push parameter 2
PUSH W2 ; Push parameter 3
CALL COMPUTE ; Call COMPUTE function
POP w2 ; Pop parameter 3
POP W1l ; Pop parameter 2
POP WO ; Pop parameter 1
COMPUTE :
LNK #4 ; Stack FP, allocate 4 bytes for local variables
ULNK ; Free allocated memory, restore original FP
RETURN ; Return to TASKA

Figure 4-8: Stack at the Beginning of Example 4-14

0x0000
0x0800

F’f‘)?‘e <—— W14 (FP)

TASKA

<TOS> <«—— W15 (SP)
OXFFFE

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 4-23

dsPIC30F/33F Programmer’s Reference Manual

Figure 4-9: Stack After “CALLCOMPUTE" Executes
0x0000
0x0800
Frf‘);”e <—— W14 (FP)
TASKA

Parameter 1
Parameter 2
Parameter 3
PC<15:0>
0:PC<22:16>
<TOS> <«— W15 (SP)

OXFFFE

Figure 4-10: Stack After “LNK #4" Executes

0x0000

0x0800

Frame
of
TASKA

Parameter 1
Parameter 2
Parameter 3
PC<15:0>

0:PC<22:16>
FP of TASKA
Temp Word1 | <«—— W14 (FP)
Temp Word 2

<TOS> <«—— W15 (SP)

OXFFFE

4.7.5 Stack Pointer Overflow

There is a stack limit register (SPLIM) associated with the Stack Pointer that is reset to 0x0000.
SPLIM is a 16-bit register, but SPLIM<0> is fixed to ‘0’, because all stack operations must be
word-aligned.

The stack overflow check will not be enabled until a word write to SPLIM occurs, after which time
it can only be disabled by a device Reset. All effective addresses generated using W15 as a
source or destination are compared against the value in SPLIM. Should the effective address be
greater than the contents of SPLIM, then a stack error trap is generated.

If stack overflow checking has been enabled, a stack error trap will also occur if the W15 effective
address calculation wraps over the end of data space (OXFFFF).

Refer to the dsPIC30F Family Reference Manual (DS70046) for more information on the stack
error trap.

4.7.6 Stack Pointer Underflow

The stack is initialized to 0x0800 during Reset. A stack error trap will be initiated should the Stack
Pointer address ever be less than 0x0800.

Note: Locations in data space between 0x0000 and OxO7FF are, in general, reserved for

core and peripheral Special Function Registers (SFR).

DS70157B-page 4-24

Prelimi nary © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

4.8 Conditional Branch Instructions

Conditional branch instructions are used to direct program flow, based on the contents of the
STATUS register. These instructions are generally used in conjunction with a Compare class
instruction, but they may be employed effectively after any operation that modifies the STATUS
register.

The compare instructions cP, CPO and CPB, perform a subtract operation (minuend —
subtrahend), but do not actually store the result of the subtraction. Instead, compare instructions
just update the flags in the STATUS register, such that an ensuing conditional branch instruction
may change program flow by testing the contents of the updated STATUS register. If the result
of the STATUS register test is true, the branch is taken. If the result of the STATUS register test
is false, the branch is not taken.

The conditional branch instructions supported by the dsPIC30F and dsPIC33F devices are
shown in Table 4-8. This table identifies the condition in the STATUS register which must be true
for the branch to be taken. In some cases, just a single bit is tested (as in BRA C), while in other
cases, a complex logic operation is performed (as in BRA GT). It is worth noting that both signed
and unsigned conditional tests are supported, and that support is provided for DSP algorithms
with the OA, OB, SA and SB condition mnemonics.

Table 4-8: Conditional Branch Instructions

M?]er;d(;triiocn(l) Description Status Test
C Carry (not Borrow) C
GE Signed greater than or equal (N&&OV) || (N&&OV)
GEU®@ Unsigned greater than or equal c
GT Signed greater than (Z&&N&&OV) || (Z&&N&&OV)
GTU Unsigned greater than c&&Z
LE Signed less than or equal Z || (N&&OV) || (N&&OV)
LEU Unsigned less than or equal Ccllz
LT Signed less than (N&&OV) || (N&&OV)
LTU® Unsigned less than C
N Negative N
NC Not Carry (Borrow) C
NN Not Negative N
NOV Not Overflow oV
NZ Not Zero z
OA Accumulator A overflow OA
OB Accumulator B overflow OB
ov Overflow ov
SA Accumulator A saturate SA
SB Accumulator B saturate SB
Z Zero Z

Note 1: Instructions are of the form: BRA mnemonic, Expr.

2: GEU is identical to C and will reverse assemble to BRA C, Expr.
3: LTU is identical to NC and will reverse assemble to BRA NC, Expr.

Note:

The “Compare and Skip” instructions (CPSEQ,
modify the STATUS register.

CPSGT, CPSLT, CPSNE) do not

© 2005 Microchip Technology Inc.

Preliminary

DS70157B-page 4-25

dsPIC30F/33F Programmer’s Reference Manual

4.9 Z Status Bit

The Z Status bit is a special zero Status bit that is useful for extended precision arithmetic. The
Z bit functions like a normal Z flag for all instructions, except those that use the carry/borrow input
(ADDC, CPB, SUBB and SUBBR). For the ADDC, CPB, SUBB and SUBBR instructions, the Z bit
can only be cleared and never set. If the result of one of these instructions is non-zero, the Z bit
will be cleared and will remain cleared, regardless of the result of subsequent ADDC, CPB, SUBB
or SUBBR operations. This allows the Z bit to be used for performing a simple zero check on the
result of a series of extended precision operations.

A sequence of instructions working on multi-precision data (starting with an instruction with no
carry/borrow input), will automatically logically AND the successive results of the zero test. All
results must be zero for the Z flag to remain set at the end of the sequence of operations. If the
result of the ADDC, CPB, SUBB or SUBBR instruction is non-zero, the Z bit will be cleared and
remain cleared for all subsequent ADDC, CPB, SUBB Or SUBBR instructions. Example 4-15
shows how the Z bit operates for a 32-bit addition. It shows how the Z bit is affected for a 32-bit
addition implemented with an ADD/ADDC instruction sequence. The first example generates a
zero result for only the most significant word, and the second example generates a zero result
for both the least significant word and most significant word.

Example 4-15: ‘Z’ Status bit Operation for 32-bit Addition

; Add two doubles (WO:W1l and W2:W3)

; Store the result in W5:W4

ADD WO, W2, W4 ; Add LSWord and store to W4
ADDC Wl, W3, W5 ; Add MSWord and store to W5

Before 32-bit Addition (zero result for the most significant word):
WO = 0x2342
Wl = O0xFFFO
W2 = Ox39AA
W3 = 0x0010
W4 = 0x0000
W5 = 0x0000
SR = 0x0000

After 32-bit Addition:
WO = 0x2342
W1l = OxXFFFO
W2 = Ox39AA
W3 = 0x0010
W4 = 0x5CEC
W5 = 0x0000
SR = 0x0201 (DC,C=1)

Before 32-bit Addition (zero result for the least significant word and most significant word):
W0 = 0xB76E
Wl = OxFB7B
W2 = 0x4892
W3 = 0x0484
W4 = 0x0000
W5 = 0x0000
SR = 0x0000

After 32-bit Addition:
WO = OxXB76E
Wl = OxFB7B
W2 = 0x4892
W3 = 0x0485
W4 = 0x0000
W5 = 0x0000
SR = 0x0103 (DC,Zz,C=1)

DS70157B-page 4-26

Prelimi nary © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

4.10 Assigned Working Register Usage

The 16 working registers of the dsPIC30F and dsPIC33F provide a large register set for efficient
code generation and algorithm implementation. In an effort to maintain an instruction set that pro-
vides advanced capability, a stable run-time environment and backwards compatibility with earlier
Microchip processor cores, some working registers have a pre-assigned usage. Table 4-9 summa-
rizes these working register assignments, with details provided in subsections Section 4.10.1
“Implied DSP Operands” through Section 4.10.3 “PICmicro® Microcontroller Compatibility”.

Table 4-9: Special Working Register Assignments
Register Special Assignment

Wwo Default WREG, Divide Quotient

w1 Divide Remainder

w2 “MUL " Product least significant word

W3 “MUL f” Product most significant word

w4 MAC Operand

W5 MAC Operand

W6 MAC Operand

W7 MAC Operand

w8 MAC Prefetch Address (X Memory)

W9 MAC Prefetch Address (X Memory)

W10 MAC Prefetch Address (Y Memory)

w11 MAC Prefetch Address (Y Memory)

W12 MAC Prefetch Offset

W13 MAC Write Back Destination

w14 Frame Pointer

W15 Stack Pointer

4.10.1 Implied DSP Operands

To assist instruction encoding and maintain uniformity among the DSP class of instructions,
some working registers have pre-assigned functionality. For all DSP instructions which have
prefetch ability, the following 10 register assignments must be adhered to:

* W4-W7 are used for arithmetic operands

* W8-W11 are used for prefetch addresses (pointers)

* W12 is used for the prefetch register offset index

« W13 is used for the accumulator Write Back destination

These restrictions only apply to the DSP MAC class of instructions, which utilize working regis-

ters and have prefetch ability (described in Section 4.15 “DSP Accumulator Instructions”).
The affected instructions are CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.Nand MSC.

The DSP Accumulator class of instructions (described in Section 4.15 “DSP Accumulator
Instructions”) are not required to follow the working register assignments in Table 4-9 and may
freely use any working register when required.

4.10.2 Implied Frame and Stack Pointer

To accommodate software stack usage, W14 is the implied Frame Pointer (used by the LNK and
ULNK instructions) and W15 is the implied Stack Pointer (used by the CALL, LNK, POP, PUSH,
RCALL, RETFIE, RETLW, RETURN, TRAP and ULNK instructions). Even though W14 and
W15 have this implied usage, they may still be used as generic operands in any instruction, with
the exceptions outlined in Section 4.10.1 “Implied DSP Operands”. If W14 and W15 must be
used for other purposes (it is strongly advised that they remain reserved for the Frame and Stack
Pointer), extreme care must be taken such that the run-time environment is not corrupted.

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 4-27

dsPIC30F/33F Programmer’s Reference Manual

4.10.3 PICmicro® Microcontroller Compatibility

4.10.3.1 Default Working Register WREG

To ease the migration path for users of the Microchip PICmicro MCU families, the dsPIC30F and
dsPIC33F have matched the functionality of the PICmicro MCU instruction sets as closely as
possible. One major difference between the dsPIC30F/33F and the PICmicro MCU processors
is the number of working registers provided. The PICmicro MCU families only provide one 8-bit
working register, while the dsPIC30F and dsPIC33F provide sixteen, 16-bit working registers. To
accommodate for the one working register of the PICmicro MCU, the dsPIC30F/33F instruction
set has designated one working register to be the default working register for all legacy file reg-
ister instructions. The default working register is set to WO, and it is used by all instructions which
use file register addressing.

Additionally, the syntax used by the dsPIC30F/33F assembler to specify the default working reg-
ister is similar to that used by the PICmicro MCU assembler. As shown in the detailed instruction
descriptions in Section 5. “Instruction Descriptions”, “WREG” must be used to specify the
default working register. Example 4-16 shows several instructions which use WREG.

Example 4-16: Using the Default Working Register WREG

ADD RAM100 ; add RAM100 and WREG, store in RAM100
ASR RAM100, WREG ; shift RAM100 right, store in WREG
CLR.B WREG ; clear the WREG LS Byte

DEC RAM100, WREG ; decrement RAM100, store in WREG

MOV WREG, RAM100 ; move WREG to RAM100

SETM WREG ; set all bits in the WREG

XOR RAM100 ; XOR RAM100 and WREG, store in RAM100

4,10.3.2 PRODH:PRODL Register Pair

Another significant difference between the Microchip PICmicro MCU and dsPIC30F/33F archi-
tectures is the multiplier. Some PICmicro MCU families support an 8-bit x 8-bit multiplier, which
places the multiply product in the PRODH:PRODL register pair. The dsPIC30F and dsPIC33F
have a 17-bit x 17-bit multiplier, which may place the result into any two successive working reg-
isters (starting with an even register), or an accumulator.

Despite this architectural difference, the dsPIC30F and dsPIC33F still support the legacy file reg-
ister multiply instruction (MULWF) with the “MUL{ .B} £” instruction (described on page 5-169).
Supporting the legacy MULWF instruction has been accomplished by mapping the
PRODH:PRODL registers to the working register pair W3:W2. This means that when

“MUL{.B} £"is executed in Word mode, the multiply generates a 32-bit product which is stored
in W3:W2, where W3 has the most significant word of the product and W2 has the least signifi-
cant word of the product. When “MUL{ .B} £”is executed in Byte mode, the 16-bit product is
stored in W2, and W3 is unaffected. Examples of this instruction are shown in Example 4-17.

DS70157B-page 4-28

Prelimi nary © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

Example 4-17: Unsigned f and WREG Multiply (Legacy MULWF Instruction)

MUL.B 0x100 ; (0x100) *WREG (byte mode), store to W2

Before Instruction:
WO (WREG) = 0x7705
W2 = 0x1235
W3 = 0x1000
Data Memory 0x0100 = 0x1255

After Instruction:
WO (WREG) = 0x7705
W2 = 0x01A9
W3 = 0x1000
Data Memory 0x0100 = 0x1255

MUL 0x100 ; (0x100) *WREG (word mode), store to W3:W2

Before Instruction:
WO (WREG) = 0x7705
W2 = 0x1235
W3 = 0x1000
Data Memory 0x0100 = 0x1255

After Instruction:
WO (WREG) = 0x7705
W2 = OxDEA9
W3 = 0x0885
Data Memory 0x0100 = 0x1255

4.10.3.3 Moving Data with WREG

The “Mov{.B} £ {,WREG}"instruction (described on page 5-145) and “MOV{ .B} WREG, £”
instruction (described on page 5-146) allow for byte or word data to be moved between file
register memory and the WREG (working register WO0). These instructions provide equivalent
functionality to the legacy Microchip PICmicro MCU MOVF and MOVWF instructions.

The “Mov{.B} £ {,WREG}"and“MOV{.B} WREG, £”instructions are the only MOV instructions
which support moves of byte data to and from file register memory. Example 4-18 shows several
MOV instruction examples using the WREG.

Note: When moving word data between file register memory and the working register
array, the “MOv Wns, £"and‘“MOV £, Wnd” instructions allow any working register
(WO0:W15) to be used as the source or destination register, not just WREG.

Example 4-18: Moving Data with WREG

MOV.B 0x1001, WREG ; move the byte stored at location 0x1001 to WO
MOV 0x1000, WREG ; move the word stored at location 0x1000 to WO
MOV.B WREG, TBLPAG ; move the byte stored at WO to the TBLPAG register
MOV WREG, 0x804 ; move the word stored at WO to location 0x804

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 4-29

dsPIC30F/33F Programmer’s Reference Manual

411 DSP Data Formats

4111 Integer and Fractional Data

The dsPIC30F and dsPIC33F devices support both integer and fractional data types. Integer
data is inherently represented as a signed two’s complement value, where the Most Significant
bit is defined as a sign bit. Generally speaking, the range of an N-bit two’s complement integer
is -2N-1 t0 2N-1_ 1. For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (OX7FFF),
including ‘0’. For a 32-bit integer, the data range is -2,147,483,648 (0x8000 0000) to
2,147,483,647 (OX7FFF FFFF).

Fractional data is represented as a two’s complement number, where the Most Significant bit is
defined as a sign bit, and the radix point is implied to lie just after the sign bit. This format is
commonly referred to as 1.15 (or Q15) format, where 1 is the number of bits used to represent
the integer portion of the number, and 15 is the number of bits used to represent the fractional
portion. The range of an N-bit two’'s complement fraction with this implied radix point is -1.0 to
a- 21'N). For a 16-bit fraction, the 1.15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF),
including 0.0 and it has a precision of 3.05176x107°. In Normal Saturation mode, the 32-hit
accumulators use a 1.31 format, which enhances the precision to 4.6566x101°.

Super Saturation mode expands the dynamic range of the accumulators by using the 8 bits of
the Upper Accumulator register (ACCxU) as guard bits. Guard bits are used if the value stored
in the accumulator overflows beyond the 324 pit, and they are useful for implementing DSP
algorithms. This mode is enabled when the ACCSAT bit (CORCON<4>), is set to ‘1’ and it
expands the accumulators to 40 bits. The accumulators then support an integer range of
-5.498x10™! (0x80 0000 0000) to 5.498x101 (0x7F FFFF FFFF). In Fractional mode, the guard
bits of the accumulator do not modify the location of the radix point and the 40-bit accumulators
use a 9.31 fractional format. Note that all fractional operation results are stored in the 40-bit Accu-
mulator, justified with a 1.31 radix point. As in Integer mode, the guard bits merely increase the
dynamic range of the accumulator. 9.31 fractions have a range of -256.0 (0x80 0000 0000) to
(256.0 — 4.65661x10719) (0x7F FFFF FFFF). Table 4-10 identifies the range and precision of
integers and fractions on the dsPIC30F/33F devices for 16-bit, 32-bit and 40-bit registers.

It should be noted that, with the exception of DSP multiplies, the ALU operates identically on inte-
ger and fractional data. Namely, an addition of two integers will yield the same result (binary num-
ber) as the addition of two fractional numbers. The only difference is how the result is interpreted
by the user. However, multiplies performed by DSP operations are different. In these instructions,
data format selection is made by the IF bit, CORCON<0>, and it must be set accordingly (‘0’ for
Fractional mode, ‘1’ for Integer mode). This is required because of the implied radix point used
by dsPIC30F/33F fractional numbers. In Integer mode, multiplying two 16-bit integers produces
a 32-bit integer result. However, multiplying two 1.15 values generates a 2.30 result. Since the
dsPIC30F and dsPIC33F devices use a 1.31 format for the accumulators, a DSP multiply in Frac-
tional mode also includes a left shift of one bit to keep the radix point properly aligned. This
feature reduces the resolution of the DSP multiplier to 2'30, but has no other effect on the
computation (e.g., 0.5 x 0.5 = 0.25).

Table 4-10: dsPIC30F/33F Data Ranges

Register Size Integer Range Fraction Range Fraction Resolution
16-bit -32768 to -1.0to (1.0 — 2°19) 3.052 x 10°°
32767
32-bit -2,147,483,648 to -1.0to (1.0 - 2731 4.657 x 1010
2,147,483,647
40-bit -549,755,813,888t0 |-256.0 to (256.0 — 2-31) | 4.657 x 10710
549,755,813,887

DS70157B-page 4-30

Prelimi nary © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

4.11.2 Integer and Fractional Data Representation

Having a working knowledge of how integer and fractional data are represented on the dsPIC30F
and dsPIC33F is fundamental to working with the device. Both integer and fractional data treat
the Most Significant bit as a sign bit, and the binary exponent decreases by one as the bit position
advances toward the Least Significant bit. The binary exponent for an N-bit integer starts at (N-1)
for the Most Significant bit, and ends at ‘0’ for the Least Significant bit. For an N-bit fraction, the
binary exponent starts at ‘0’ for the Most Significant bit, and ends at (1-N) for the Least Significant
bit. This is shown in Figure 4-11 for a positive value and in Figure 4-12 for a negative value.

Converting between integer and fractional representations can be performed using simple
division and multiplication. To go from an N-bit integer to a fraction, divide the integer value by
2N-1 Likewise, to convert an N-bit fraction to an integer, multiply the fractional value by 2N-1.

Figure 4-11: Different Representations of 0x4001

Integer:
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
215 14 13 12 20
0x4001 = 214 + 20 = 16384 + 1 = 16385
1.15 Fractional:
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2002t 22 2% 215

Implied Radix Point

0x4001 = 2’1 + 215 = 0.5 + .000030518 = 0.500030518

Figure 4-12: Different Representations of 0xC002

Integer:

215 pl4 o138 o1z 20
0xC002 = -215 + 214 4+ 21= 32768 + 16384 + 2 = -16382
1.15 Fractional:
1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 -1 -2 -3
20 . 2 2 272 ... >-15

Implied Radix Point

0xC002 = -20 + 2°1 + 214 = .1 0 + 0.5 + 0.000061035 = -0.499938965

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 4-31

dsPIC30F/33F Programmer’s Reference Manual

4.12 Accumulator Usage

Accumulators A and B are utilized by DSP instructions to perform mathematical and shifting
operations. Since the accumulators are 40 bits wide and the X and Y data paths are only 16 bits,
the method to load and store the accumulators must be understood.

Item A in Figure 4-13 shows that each 40-bit Accumulator (ACCA and ACCB) consists of an 8-bit
Upper register (ACCxU), a 16-bit High register (ACCxH) and a 16-bit Low register (ACCxL). To
address the bus alignment requirement and provide the ability for 1.31 math, ACCxH is used as
a destination register for loading the accumulator (with the LAC instruction), and also as a source
register for storing the accumulator (with the SAC.R instruction). This is represented by Iltem B,
Figure 4-13, where the upper and lower portions of the accumulator are shaded. In reality, during
accumulator loads, ACCxL is zero backfilled and ACCxU is sign-extended to represent the sign
of the value loaded in ACCxH.

When Normal (31-bit) Saturation is enabled, DSP operations (such as ADD, MAC, MSC, etc.)
utilize solely ACCxH:ACCxL (ltem C in Figure 4-13) and ACCxU is only used to maintain the sign
of the value stored in ACCxH:ACCxL. For instance, when a MPY instruction is executed, the
result is stored in ACCxH:ACCxL, and the sign of the result is extended through ACCxU.

When Super Saturation is enabled, all registers of the accumulator may be used (Item D in
Figure 4-13) and the results of DSP operations are stored in ACCxU:ACCxH:ACCxL. The benefit
of ACCxU is that it increases the dynamic range of the accumulator, as described in
Section 4.11.1 “Integer and Fractional Data”. Refer to Table 4-10 to see the range of values
which may be stored in the accumulator when in Normal and Super Saturation modes.

Figure 4-13: Accumulator Alignment and Usage

A) ACCxU ACCxH ACCxL
39 32131.30 16| 15 0

g
L

D)

\ Implied Radix Point (between bits 31 and 30)

A) 40-bit Accumulator consists of ACCxU:ACCxH:ACCxL
B) Load and Store operations

C) Operations in Normal Saturation mode

D) Operations in Super Saturation mode

DS70157B-page 4-32

Prelimi nary © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

413 Accumulator Access

The six registers of Accumulator A and Accumulator B are memory mapped like any other
Special Function Register. This feature allows them to be accessed with file register or indirect
addressing, using any instruction which supports such addressing. However, it is recommended
that the DSP instructions LAC, SAC and SAC.R be used to load and store the accumulators,
since they provide sign-extension, shifting and rounding capabilities. LAC, SAC and SAC.R
instruction details are provided in Section 5. “Instruction Descriptions”.

Note: For convenience, ACCAU and ACCBU are sign-extended to 16 bits. This provides
the flexibility to access these registers using either Byte or Word mode (when file
register or indirect addressing is used).

4.14 DSP MAC Instructions

The DSP Multiply and Accumulate (MAC) operations are a special suite of instructions which
provide the most efficient use of the dsPIC30F and dsPIC33F architectures. The DSP MAC
instructions, shown in Table 4.14, utilize both the X and Y data paths of the CPU core, which
enables these instructions to perform the following operations all in one cycle:

« two reads from data memory using prefetch working registers (MAC Prefetches)

» two updates to prefetch working registers (MAC Prefetch Register Updates)

« one mathematical operation with an accumulator (MAC Operations)

In addition, four of the ten DSP MAC instructions are also capable of performing an operation with
one accumulator, while storing out the rounded contents of the alternate accumulator. This
feature is called accumulator Write Back (WB) and it provides flexibility for the software

developer. For instance, the accumulator WB may be used to run two algorithms concurrently, or
efficiently process complex numbers, among other things.

Table 4-11: DSP MAC Instructions

Instruction Description Accumulator WB?
CLR Clear accumulator Yes
ED Euclidean distance (no accumulate) No
EDAC Euclidean distance No
MAC Multiply and accumulate Yes
MAC Square and accumulate No
MOVSAC Move from X and Y bus Yes
MPY Multiply to accumulator No
MPY Square to accumulator No
MPY.N Negative multiply to accumulator No
MSC Multiply and subtract Yes

4,141 MAC Prefetches

Prefetches (or data reads) are made using the effective address stored in the working register.
The two prefetches from data memory must be specified using the working register assignments
shown in Table 4-9. One read must occur from the X data bus using W8 or W9, and one read
must occur from the Y data bus using W10 or W11. Allowable destination registers for both
prefetches are W4-W?7.

As shown in Table 4-3, one special Addressing mode exists for the MAC class of instructions. This
mode is the Register Offset Addressing mode and utilizes W12. In this mode, the prefetch is
made using the effective address of the specified working register, plus the 16-bit signed value
stored in W12. Register Offset Addressing may only be used in the X space with W9, and in the
Y-space with W11.

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 4-33

dsPIC30F/33F Programmer’s Reference Manual

4.14.2 MAC Prefetch Register Updates

After the MAC prefetches are made, the effective address stored in each prefetch working register
may be modified. This feature enables efficient single-cycle processing for data stored sequen-
tially in X and Y memory. Since all DSP instructions execute in Word mode, only even numbered
updates may be made to the effective address stored in the working register. Allowable address
modifications to each prefetch register are -6, -4, -2, 0 (no update), +2, +4 and +6. This means
that effective address updates may be made up to 3 words in either direction.

When the Register Offset Addressing mode is used, no update is made to the base prefetch
register (W9 or W11), or the offset register (W12).

4.14.3 MAC Operations

The mathematical operations performed by the MAC class of DSP instructions center around
multiplying the contents of two working registers and either adding or storing the result to either
Accumulator A or Accumulator B. This is the operation of the MAC, MPY, MPY.N and MSC instruc-
tions. Table 4-9 shows that W4-W7 must be used for data source operands in the MAC class of
instructions. W4-W7 may be combined in any fashion, and when the same working register is
specified for both operands, a square or square and accumulate operation is performed.

For the ED and EDAC instructions, the same multiplicand operand must be specified by the
instruction, because this is the definition of the Euclidean Distance operation. Another unique
feature about this instruction is that the values prefetched from X and Y memory are not actually
stored in W4-W?7. Instead, only the difference of the prefetched data words is stored in W4-W?7.

The two remaining MAC class instructions, CLR and MOVSAC, are useful for initiating or completing
a series of MAC or EDAC instructions and do not use the multiplier. CLR has the ability to clear
Accumulator A or B, prefetch two values from data memory and store the contents of the other
accumulator. Similarly, MOVSAC has the ability to prefetch two values from data memory and store
the contents of either accumulator.

4.14.4 MAC Write Back

The write back ability of the MAC class of DSP instructions facilitates efficient processing of
algorithms. This feature allows one mathematical operation to be performed with one
accumulator, and the rounded contents of the other accumulator to be stored in the same cycle.
As indicated in Table 4-9, register W13 is assigned for performing the write back, and two
Addressing modes are supported: Direct and Indirect with Post-Increment.

The CLR, MOVSAC and MSC instructions support accumulator Write Back, while the ED, EDAC,
MPY and MPY . N instructions do not support accumulator Write Back. The MAC instruction, which
multiplies two working registers which are not the same, also supports accumulator Write Back.
However, the square and accumulate MAC instruction does not support accumulator Write Back
(see Table 4.14).

4,145 MAC Syntax

The syntax of the MAC class of instructions can have several formats, which depend on the
instruction type and the operation it is performing, with respect to prefetches and accumulator
Write Back. With the exception of the CLR and MOVSAC instructions, all MAC class instructions
must specify a target accumulator along with two multiplicands, as shown in Example 4-19.

DS70157B-page 4-34

Prelimi nary © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

Example 4-19: Base MAC Syntax

; MAC with no prefetch
MAC W4*W5, A

p Multiply W4*W5, Accumulate to ACCA

; MAC with no prefetch
MAC W7*W7, B

P Multiply W7*W7, Accumulate to ACCB

If a prefetch is used in the instruction, the assembler is capable of discriminating the X or Y data
prefetch based on the register used for the effective address. [W8] or [W9] specifies the X
prefetch and [W10] or [W11] specifies the Y prefetch. Brackets around the working register are
required in the syntax, and they designate that indirect addressing is used to perform the
prefetch. When address modification is used, it must be specified using a minus-equals or
plus-equals “C"-like syntax (i.e., “[W8] — = 2" or “[W8] + = 6”). When Register Offset Addressing
is used for the prefetch, W12 is placed inside the brackets (W9 + W12] for X prefetches and
[W11 + W12] for Y prefetches). Each prefetch operation must also specify a prefetch destination
register (W4-W?7). In the instruction syntax, the destination register appears before the prefetch
register. Legal forms of prefetch are shown in Example 4-20.

Example 4-20: MAc Prefetch Syntax

; MAC with X only prefetch

MAC W5*Wé6, A, [W8]+=2, W5

yp» ACCA=ACCA+W5*W6

» X ([W8]+=2)—> W5

; MAC with Y only prefetch

MAC W5*W5, B, [W1l+W12], W5

- ACCB=ACCB+W5*W5

» Y ([W11l+W1l2])—> W5

; MAC with X/Y prefetch
MAC W6*W7, B, [Wol, We, [W10] +=4, W7

P ACCB=ACCB+W6*W7

- X ([WO])— W6

» Y ([W10]+=4) > W7

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 4-35

dsPIC30F/33F Programmer’s Reference Manual

If an accumulator Write Back is used in the instruction, it is specified last. The Write Back must
use the W13 register, and allowable forms for the Write Back are “W13” for direct addressing and
“[W13] + = 2" for indirect addressing with post-increment. By definition, the accumulator not used
in the mathematical operation is stored, so the Write Back accumulator is not specified in the
instruction. Legal forms of accumulator Write Back (WB) are shown in Example 4-21.

Example 4-21: MAC Accumulator WB Syntax

; CLR with direct WB of ACCB

CIR A, W13

» 0 — ACCA

P ACCB > W13

; MAC with indirect WB of ACCB

MAC W4*W5, A [W13]+=2

- ACCA=ACCA+W4*W5

P ACCB — [W13]+=2

MAC with Y prefetch, direct WB of ACCA

7

MAC W4*W5, B, [W10]+=2, W4, W13

P ACCB=ACCB+W4*W5

P Y ([W10] +=2) - W4

» ACCA — W13

Putting it all together, an MSc instruction which performs two prefetches and a write back is
shown in Example 4-22.

Example 4-22: Msc Instruction with Two Prefetches and Accumulator Write Back

; MSC with X/Y prefetch, indirect WB of ACCA

MSC We*W7, B, [W8]+=2, W6, [W1l0]-=6, W7 [W13]+=2

P ACCB=ACCB-W6*W7
P X ([W8] +=2) W6
Py ([W10] -=6) W7

| p-ACCA—> [W13] +=2

DS70157B-page 4-36 Prelimin ary © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

4.15 DSP Accumulator Instructions

The DSP Accumulator instructions do not have prefetch or accumulator WB ability, but they do
provide the ability to add, negate, shift, load and store the contents of either 40-bit Accumulator.
In addition, the ADD and SUB instructions allow the two accumulators to be added or subtracted
from each other. DSP Accumulator instructions are shown in Table 4-12 and instruction details
are provided in Section 5. “Instruction Descriptions”.

Table 4-12: DSP Accumulator Instructions
Instruction Description Accumulator WB?
ADD Add accumulators No
ADD 16-hit signed accumulator add No
LAC Load accumulator No
NEG Negate accumulator No
SAC Store accumulator No
SAC.R Store rounded accumulator No
SFTAC Arithmetic shift accumulator by Literal No
SFTAC Arithmetic shift accumulator by (Wn) No
SUB Subtract accumulators No
4.16 Scaling Data with the FBCL Instruction

To minimize quantization errors that are associated with data processing using DSP instructions,
it is important to utilize the complete numerical result of the operations. This may require scaling
data up to avoid underflow (i.e., when processing data from a 12-bit ADC), or scaling data down
to avoid overflow (i.e., when sending data to a 10-bit DAC). The scaling, which must be
performed to minimize quantization error, depends on the dynamic range of the input data which
is operated on, and the required dynamic range of the output data. At times, these conditions
may be known beforehand and fixed scaling may be employed. In other cases, scaling conditions
may not be fixed or known, and then dynamic scaling must be used to process data.

The FBCL instruction (Find First Bit Change Left) can efficiently be used to perform dynamic
scaling, because it determines the exponent of a value. A fixed point or integer value’s exponent
represents the amount which the value may be shifted before overflowing. This information is
valuable, because it may be used to bring the data value to “full scale”, meaning that its numeric
representation utilizes all the bits of the register it is stored in.

The FBCL instruction determines the exponent of a word by detecting the first bit change starting
from the value’s sign bit and working towards the LSB. Since the dsPIC DSC device’s barrel
shifter uses negative values to specify a left shift, the FBCL instruction returns the negated expo-
nent of a value. If the value is being scaled up, this allows the ensuing shift to be performed
immediately with the value returned by FBCL. Additionally, since the FBCL instruction only oper-
ates on signed quantities, FBCL produces results in the range of -15:0. When the FBCL instruc-
tion returns ‘0, it indicates that the value is already at full scale. When the instruction returns -15,
it indicates that the value cannot be scaled (as is the case with 0x0 and OXFFFF). Table 4-13
shows word data with various dynamic ranges, their exponents, and the value after scaling each
data to maximize the dynamic range. Example 4-23 shows how the FBCL instruction may be
used for block processing.

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 4-37

dsPIC30F/33F Programmer’s Reference Manual

Table 4-13: Scaling Examples

Word Value Exponent (Wor(;:%/l;izaz\gl:gnem)
0x0001 14 0x4000
0x0002 13 0x4000
0x0004 12 0x4000
0x0100 6 0x4000
OXOLFF 6 Ox7FCO
0x0806 3 0x4030
0x2007 1 Ox400E
0x4800 0 0x4800
0x7000 0 0x7000
0x8000 0 0x8000
0X900A 0 0X900A
OXE001 2 0x8004
OXFFO7 7 0x8380

Note: For the word values 0x0000 and OxFFFF, the FBCL instruction returns -15.

As a practical example, assume that block processing is performed on a sequence of data with
very low dynamic range stored in 1.15 fractional format. To minimize quantization errors, the data
may be scaled up to prevent any quantization loss which may occur as it is processed. The FBCL
instruction can be executed on the sample with the largest magnitude to determine the optimal
scaling value for processing the data. Note that scaling the data up is performed by left shifting
the data. This is demonstrated with the code snippet below.

Example 4-23: Scaling with FBCL

; assume WO contains the largest absolute value of the data block
; assume W4 points to the beginning of the data block
; assume the block of data contains BLOCK_SIZE words

; determine the exponent to use for scaling
FBCL WO, W2 ; store exponent in W2

; scale the entire data block before processing

DO # (BLOCK_SIZE—l) , SCALE
LAC [Wa]l, A ; move the next data sample to ACCA
SFTAC A, W2 ; shift ACCA by W2 bits
SCALE:
SAC A, [Wa++] ; store scaled input (overwrite original)

; now process the data
; (processing block goes here)

DS70157B-page 4-38

Prelimin ary © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

4.17 Normalizing the Accumulator with the FBCL Instruction

The process of scaling a quantized value for its maximum dynamic range is known as
normalization (the data in the third column in Table 4-13 contains normalized data). Accumulator
normalization is a technique used to ensure that the accumulator is properly aligned before
storing data from the accumulator, and the FBCL instruction facilitates this function.

The two 40-bit accumulators each have 8 guard bits from the ACCxU register, which expands the
dynamic range of the accumulators from 1.31 to 9.31, when operating in Super Saturation mode
(see Section 4.11.1 “Integer and Fractional Data”). However, even in Super Saturation mode,
the Store Rounded Accumulator (SAC. R) instruction only stores 16-bit data (in 1.15 format) from
ACCxH, as described in Section 4.12 “Accumulator Usage”. Under certain conditions, this
may pose a problem.

Proper data alignment for storing the contents of the accumulator may be achieved by scaling
the accumulator down if ACCxU is in use, or scaling the accumulator up if all of the ACCxH bits
are not being used. To perform such scaling, the FBCL instruction must operate on the ACCxU
byte and it must operate on the ACCxH word. If a shift is required, the ALU’s 40-bit shifter is
employed, using the SFTAC instruction to perform the scaling. Example 4-24 contains a code
snippet for accumulator normalization.

Example 4-24: Normalizing with FBCL

; assume an operation in ACCA has just completed (SR intact)
; assume the processor is in super saturation mode
; assume ACCAH is defined to be the address of ACCAH (0x24)

MOV #ACCAH, WS ; W5 points to ACCAH

BRA OA, FBCL_GUARD ; 1f overflow we right shift
FBCL_HI:

FBCL [W5], WO ; extract exponent for left shift

BRA SHIFT_ACC ; branch to the shift
FBCL_GUARD:

FBCL [++W5], WO ; extract exponent for right shift

ADD.B WO, #15, WO ; adjust the sign for right shift
SHIFT ACC:

SFTAC A, WO ; shift ACCA to normalize

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 4-39

dsPIC30F/33F Programmer’s Reference Manual

NOTES:

DS70157B-page 4-40 Prelimin ary © 2005 Microchip Technology Inc.

MICROCHIP

Section 5. Instruction Descriptions

HIGHLIGHTS

This section of the manual contains the following major topics:

5.1 INSIUCHON SYMDOIS.ciiiiiiiee ettt e et e e e s et e e e e e nnees 5-2
5.2 Instruction Encoding Field Descriptors INtroduction...........c.ccooeviviieeeeiiiien e 5-2
5.3 Instruction Description EXamMPIEcccioiiiiiiiie it 5-6
5.4 INStrUCHION DESCIIPLIONS. ... uitiiiie ettt e et e e e eee e e e e ettt rre e e e e sttt e e e e s satbeeee e s entbaeaeesaaseees 5-7

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-1

dsPIC30F/33F Programmer’s Reference Manual

5.1 Instruction Symbols
All symbols used in Section 5.4 “Instruction Descriptions” are shown in Table 1-2.
5.2 Instruction Encoding Field Descriptors Introduction

All instruction encoding field descriptors used in Section 5.4 “Instruction Descriptions” are
shown in Table 5-2 through Table 5-12.

Table 5-1: Instruction Encoding Field Descriptors

Field Description

A | Accumulator selection bit: 0 = ACCA; 1 = CCB
aa |Accumulator Write Back mode (see Table 5-12)
B Byte mode selection bit: 0 = word operation; 1 = byte operation
bbbb | 4-bit bit position select: 0000 =LSB; 1111 = MSB

D Destination address bit: 0 = result stored in WREG;
1 = result stored in file register

dddd | Wd destination register select: 0000 = W0; 1111 = W15
f £ffff ff£ff £££f£f | 13-bit register file address (0x0000 to OX1FFF)

fff £fff £££ff fE££f |15-bit register file word address (implied 0 LSB)
(0x0000 to OXxFFFE)

ffff ffff ffff ffff 16-bit register file byte address (0x0000 to OXFFFF)

ggg | Register Offset Addressing mode for Ws source register
(see Table 5-4)

hhh | Register Offset Addressing mode for Wd destination register
(see Table 5-5)

iiii Prefetch X Operation (see Table 5-6)
3333 Prefetch Y Operation (see Table 5-8)
k 1-bit literal field, constant data or expression
kkkk |4-bit literal field, constant data or expression
kk kkkk 6-bit literal field, constant data or expression
kkkk kkkk 8-bit literal field, constant data or expression
kk kkkk kkkk |10-bit literal field, constant data or expression
kk kkkk kkkk kkkk 14-bit literal field, constant data or expression
kkkk kkkk kkkk kkkk 16-bit literal field, constant data or expression

mm | Multiplier source select with same working registers
(see Table 5-10)

mmm | Multiplier source select with different working registers
(see Table 5-11)

nnnn nnnn nnnn nnnO | 23-bit program address for CALL and GOTO instructions
nnn nnnn

nnnn nnnn nnnn nnnn | 16-bit program offset field for relative branch/call instructions
ppp | Addressing mode for Ws source register (see Table 5-2)
gga | Addressing mode for Wd destination register (see Table 5-3)
rrrr |Barrel shift count
ssss Ws source register select: 0000 =WO0; 1111 = W15
tttt Dividend select, most significant word
vvvv | Dividend select, least significant word

W Double Word mode selection bit: 0 = word operation;
1 = double word operation

wwww | Wb base register select: 0000 =WO0; 1111 = W15
xx | Prefetch X Destination (see Table 5-7)
XXXX XXXX xxxx xxxx |16-bit unused field (don't care)
vy | Prefetch Y Destination (see Table 5-9)
z Bit test destination: 0 = C flag bit; 1 = Z flag bit

DS70157B-page 5-2 Prelimin ary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Table 5-2: Addressing Modes for Ws Source Register
PPP Addressing Mode Source Operand
000 Register Direct Ws
001 Indirect [Ws]
010 Indirect with Post-Decrement [Ws--]
011 Indirect with Post-Increment [Ws++]
100 Indirect with Pre-Decrement [--Ws]
101 Indirect with Pre-Increment [++Ws]
11x Unused
Table 5-3: Addressing Modes for Wd Destination Register
qqq Addressing Mode Destination Operand
000 Register Direct wd
001 Indirect [wd]
010 Indirect with Post-Decrement [Wd--]
011 Indirect with Post-Increment [Wd++]
100 Indirect with Pre-Decrement [--wd]
101 Indirect with Pre-Increment [++Wd]
1ix Unused (an attempt to use this Addressing mode will force a RESET instruction)
Table 5-4: Offset Addressing Modes for Ws Source Register (with Register Offset)
ggg Addressing Mode Source Operand
000 Register Direct Ws
001 Indirect [Ws]
010 Indirect with Post-Decrement [Ws--]
011 Indirect with Post-Increment [Ws++]
100 Indirect with Pre-Decrement [--Ws]
101 Indirect with Pre-Increment [++Ws]
1ix Indirect with Register Offset [Ws+Wh]
Table 5-5: Offset Addressing Modes for Wd Destination Register
(with Register Offset)
hhh Addressing Mode Source Operand
000 Register Direct wd
001 Indirect [wd]
010 Indirect with Post-Decrement [Wd--]
011 Indirect with Post-Increment [Wd++]
100 Indirect with Pre-Decrement [--wd]
101 Indirect with Pre-Increment [++Wd]
11x Indirect with Register Offset [Wd+Whb]

© 2005 Microchip Technology Inc.

Preliminary

DS70157B-page 5-3

)
M
0
)
=
i=l
=
o
>
n

dsPIC30F/33F Programmer’s Reference Manual

Table 5-6: X Data Space Prefetch Operation

iiii Operation
0000 Wxd = [W8]

0001 Wxd = [W8], W8 = W8 + 2
0010 Wxd = [W8], W8 = W8 + 4
0011 Wxd =[W8], W8 =W8 + 6
0100 No Prefetch for X Data Space
0101 Wxd = [W8], W8 = W8 —6
0110 Wxd =[W8], W8 =W8 -4
0111 Wxd = [W8], W8 = W8 — 2
1000 Wxd = [W9]

1001 Wxd =[W9], W9 = W9 + 2
1010 Wxd = [W9], W9 = W9 + 4
1011 Wxd = [W9], W9 = W9 + 6
1100 Wxd = [W9 + W12]

1101 Wxd = [W9], W9 = W9 — 6
1110 Wxd = [W9], W9 = W9 — 4
1111 Wxd =[W9], W9 =W9 -2
Table 5-7: X Data Space Prefetch Destination

XX Wxd
00 W4

01 W5

10 W6

11 W7

Table 5-8: Y Data Space Prefetch Operation

3333 Operation
0000 Wyd = [W10]

0001 Wyd = [W10], W10 = W10 + 2
0010 Wyd =[W10], W10 = W10 + 4
0011 Wyd =[W10], W10 = W10 + 6
0100 No Prefetch for Y Data Space
0101 Wyd =[W10], W10 =W10-6
0110 Wyd =[W10], W10 = W10 -4
0111 Wyd = [W10], W10 = W10 — 2
1000 Wyd =[W11]

1001 Wyd =[W11], W1l = W11 + 2
1010 Wyd = [W11], W11 = W11 + 4
1011 Wyd =[W11], W1l = W11 + 6
1100 Wyd = [W11 + W12]

1101 Wyd = [W11], Wil = W11 - 6
1110 Wyd = [W11], W1l = W1l — 4
1111 Wyd =[W11], W1l =W11 -2

DS70157B-page 5-4 Prelimin ary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Table 5-9: Y Data Space Prefetch Destination

Yy Wyd
00 W4

01 W5

10 W6

11 W7

Table 5-10: MAC or MPY Source Operands (Same Working Register)

mm Multiplicands
00 W4 * W4
01 W5 * W5
10 W6 * W6
11 W7 * W7

Table 5-11: MAC or MPY Source Operands (Different Working Register)

mmm Multiplicands
000 W4 * W5

001 W4 * W6

010 W4 * W7

011 Invalid

100 W5 * W6

101 W5 * W7

110 W6 * W7

111 Invalid

Table 5-12: MAC Accumulator Write Back Selection

aa Write Back Selection

00 W13 = Other Accumulator (Direct Addressing)

01 [W13] + = 2 = Other Accumulator (Indirect Addressing with Post-Increment)
10 No Write Back

11 Invalid

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-5

dsPIC30F/33F Programmer’s Reference Manual

5.3 Instruction Description Example

The example description below is for the fictitious instruction F0O. The following example
instruction was created to demonstrate how the table fields (syntax, operands, operation, etc.)
are used to describe the instructions presented in Section 5.4 “Instruction Descriptions”.

FOO

The Header field summarizes what the instruction does

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:

Cycles:

Examples:

The Syntax field consists of an optional label, the instruction mnemonic, any
optional extensions which exist for the instruction and the operands for the
instruction. Most instructions support more than one operand variant to
support the various dsPIC30F/dsPIC33F Addressing modes. In these cir-
cumstances, all possible instruction operands are listed beneath each other
(as in the case of op2a, op2b and op2c above). Optional operands are
enclosed in braces.

The Operands field describes the set of values which each of the operands
may take. Operands may be accumulator registers, file registers, literal
constants (signed or unsigned), or working registers.

The Operation field summarizes the operation performed by the instruction.

The Status Affected field describes which bits of the STATUS Register are
affected by the instruction. Status bits are listed by bit position in
descending order.

The Encoding field shows how the instruction is bit encoded. Individual bit
fields are explained in the Description field, and complete encoding details
are provided in Table 5.2.

The Description field describes in detail the operation performed by the
instruction. A key for the encoding bits is also provided.

The Words field contains the number of program words that are used to
store the instruction in memory.

The Cycles field contains the number of instruction cycles that are required
to execute the instruction.

The Examples field contains examples which demonstrate how the
instruction operates. “Before” and “After” register snapshots are provided,
which allow the user to clearly understand what operation the instruction
performs.

DS70157B-page 5-6

Prelimi nary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

5.4 Instruction Descriptions

ADD Add f to WREG

Syntax: {label:} ADD({.B} f {{\WREG}

Operands: fe[0...8191]

Operation: (f) + (WREG) — destination designated by D

Status Affected: DC,N,0QV, Z, C

Encoding: | 1011 | o100 | oBDf FEFF FEFE FEEF

Description: Add the contents of the default working register WREG to the contents of
the file register and place the result in the destination register. The
optional WREG operand determines the destination register. If WREG is
specified, the result is stored in WREG. If WREG is not specified, the
result is stored in the file register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.
Words: 1
Cycles:
Example 1: ADD.B RAM100 ; Add WREG to RAM100 (Byte mode)
Before After
Instruction Instruction
WREG | CC80 WREG| CC80
RAM100| FFCO RAM100| FF40
SR| 0000 SR| 0005 |[(QV,C=1)
Example 2: ADD RAM200, WREG ; Add RAM200 to WREG (Word mode)
Before After
Instruction Instruction
WREG | CC80 WREG | CC40
RAM200| FFCO RAM200 | FFCO
SR| 0000 SR| 0001 [(C=1)

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-7

dsPIC30F/33F Programmer’s Reference Manual

ADD

Add Literal to Wn

Syntax:

Operands:

Operation:
Status Affected:
Encoding:
Description:

Words:
Cycles:

Example 1:

Example 2:

{label:} ADD{.B} #lit10, Wn

lit10 € [0 ... 255] for byte operation
lit10 € [0 ... 1023] for word operation
Wn € [WO ... W15]

lit20 + (Wn) — Wn
DC,N,0V, Z,C

1011 | 0000 | 0Bkk ‘ Kkkkk | Kkkk ‘ dddd |

Add the 10-bit unsigned literal operand to the contents of the working
register Wn and place the result back into the working register Wn.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘K’ bits specify the literal operand.
The ‘d’ bits select the address of the working register.

Note 1: The extension .B in the instruction denotes a byte operation

rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: For byte operations, the literal must be specified as an unsigned
value [0:255]. See Section 4.6 “Using 10-bit Literal Operands”
for information on using 10-bit literal operands in Byte mode.

ADD.B #OXFF, W7 ; Add -1 to W7 (Byte mode)
Before After
Instruction Instruction
W7| 12CO0 W7 | 12BF
SR| 0000 SR| 0009 |(N,C=1)
ADD #O0XFF, W1 ; Add 255 to W1l (Word mode)
Before After
Instruction Instruction
W1| 12CO0 W1 | 13BF
SR| 0000 SR| 0000

DS70157B-page 5-8

Prelimi nary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

ADD Add Wb to Short Literal

Syntax: {label:} ADD{.B} Wh, #it5, wd
(W]
[Wd++]
[Wd--]
[++Wd]
[--wd]
Operands: Wb € [WO ... W15]
lit5 € [0 ... 31]
Wd € [WO ... W15]
Operation: (Wb) + lits - wd
Status Affected: DC,N, 0V, Z, C
Encoding: | 0100 | owww | wBqq qddd diik Kkkk
Description: Add the contents of the base register Wb to the 5-bit unsigned short literal

operand and place the result in the destination register Wd. Register
direct addressing must be used for Wb. Either register direct or indirect
addressing may be used for Wd.

The ‘W’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘K’ bits provide the literal operand, a five-bit integer number.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles:
Example 1: ADD.B WO, #Ox1F, W7 ; Add WO and 31 (Byte mode)
; Store the result in W7
Before After
Instruction Instruction
WO0| 2290 WO | 2290
W7| 12CO0 W7 | 12AF
SR| 0000 SR| 0008 |(N=1)
Example 2: ADD W3, #0x6, [--W4] ; AAd W3 and 6 (Word mode)
; Store the result in [--W4]
Before After
Instruction Instruction
W3| 6006 W3| 6006
W4 | 1000 W4 | OFFE O
Data OFFE | DDEE Data OFFE| 600C 8
Data 1000 | DDEE Data 1000 | DDEE Q
SR| 0000 SR| 0000 =
=
>
wn

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-9

dsPIC30F/33F Programmer’s Reference Manual

ADD Add Wb to Ws
Syntax: {label:} ADD{.B} Wh, Ws, wd
[Ws], [Wd]
[Ws++], [Wd++]
[Ws--], (Wd--]
[++Ws], [++wWd]
[--Ws], [--Wd]
Operands: Wb € [WO ... W15]
Ws e [WO ... W15]
Wd e [WO ... W15]
Operation: (Wb) + (Ws) —» wWd
Status Affected: DC,N,0QV, Z, C
Encoding: | 0100 ‘ owww ‘ wBgq gddd dppp ssss
Description: Add the contents of the source register Ws and the contents of the base
register Wb and place the result in the destination register Wd. Register
direct addressing must be used for Wb. Either register direct or indirect
addressing may be used for Ws and Wd.
The ‘W’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles:
Example 1: ADD.B W5, W6, W7 ; Add W5 to W6, store result in W7
; (Byte mode)
Before After
Instruction Instruction
W5| ABO0O W5| ABOO
W6| 0030 W6| 0030
W7| FFFF W7| FF30
SR| 0000 SR| 0000
Example 2: ADD W5, W6, W7 ; Add W5 to W6, store result in W7
; (Word mode)
Before After
Instruction Instruction
W5| ABO0O W5| ABO0O
W6| 0030 W6| 0030
W7| FFFF W7| AB30
SR| 0000 SR| 0008 |(N=1)

DS70157B-page 5-10

Preliminary

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

ADD

Add Accumulators

Syntax: {label’} ADD Acc
Operands: Acc € [AB]
Operation: If (Acc = A):
(ACCA) + (ACCB) — ACCA
Else:
(ACCA) + (ACCB) — ACCB
Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: | 1100 ‘ 1011 ‘ A000 0000 0000 0000
Description: Add the contents of Accumulator A to the contents of Accumulator B and
place the result in the selected accumulator. This instruction performs a
40-bit addition.
The ‘A’ bit specifies the destination accumulator.
Words: 1
Cycles: 1
Example 1: ADD A ; Add ACCB to ACCA
Before After
Instruction Instruction
ACCA| 000022 3300 ACCA| 00 1855 7858
ACCB| 00 18334558 ACCB| 00 18334558
SR 0000 SR 0000
Example 2: ADD B ; Bdd ACCA to ACCB
; Assume Super Saturation mode enabled
; (ACCSAT = 1, SATA = 1, SATB = 1)
Before After
Instruction Instruction
ACCA| 00 E111 2222 ACCA| 00E111 2222
ACCB| 00 7654 3210 ACCB| 0157655432
SR 0000 SR 4800 |(OB, OAB =1)

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-11

dsPIC30F/33F Programmer’s Reference Manual

ADD 16-Bit Signed Add to Accumulator
Syntax: {label:} ADD Ws, {#Slit4,} Acc
[Ws],
[Ws++],
[Ws--],
[--Ws],
[++Ws],
[Ws+Wb],
Operands: Ws e [WO ... W15]
Wb e [WO ... W15]
Slit4 € [-8 ... +7]
Acc € [A,B]
Operation: Shiftg)is(Extend(Ws)) + (Acc) — Acc
Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: ‘ 1100 | 1001 ‘ Awww | Wrrr rggg | ssss |
Description: Add a 16-bit value specified by the source working register to the most signif-

icant word of the selected accumulator. The source operand may specify the
direct contents of a working register or an effective address. The value
specified is added to the most significant word of the accumulator by
sign-extending and zero backfilling the source operand prior to the operation.
The value added to the accumulator may also be shifted by a 4-bit signed
literal before the addition is made.

The ‘A’ bit specifies the destination accumulator.
The ‘w’ bits specify the offset register Wb.

The ‘r’ bits encode the optional shift.

The ‘g’ bits select the source Address mode.
The ‘s’ bits specify the source register Ws.

Note: Positive values of operand Slit4 represent an arithmetic shift right
and negative values of operand Slit4 represent an arithmetic shift
left. The contents of the source register are not affected by Slit4.

Words:
Cycles: 1
Example 1: ADD WO, #2, A ; Add WO right-shifted by 2 to ACCA
Before After
Instruction Instruction
WO 8000 WO 8000
ACCA 00 7000 0000 ACCA 00 5000 0000
SR 0000 SR 0000

DS70157B-page 5-12 Prelimin ary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2: ADD

W5
ACCA
Data 2000
SR

[W5++1, A i

7

Before
Instruction

2000

00 0067 2345

5000

0000

Add the effective value of W5 to ACCA
Post-increment W5

W5
ACCA
Data 2000
SR

After
Instruction

2002

00 5067 2345

5000

0000

© 2005 Microchip Technology Inc.

Preliminary

DS70157B-page 5-13

)
M
0
)
=
i=l
=
o
>
n

dsPIC30F/33F Programmer’s Reference Manual

A DDC Add f to WREG with Carry

Syntax: {label:} ADDC{.B} f {{\WREG}

Operands: fe[0...8191]

Operation: (H + (WREG) + (C) — destination designated by D

Status Affected: DC,N,QV, Z,C

Encoding: | 1011 | o100 | 1mDf FEFE FEEE FEEF
Description: Add the contents of the default working register WREG, the contents of

the file register and the Carry bit and place the result in the destination
register. The optional WREG operand determines the destination
register. If WREG is specified, the result is stored in WREG. If WREG is
not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1. The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.
3: The Z flag is “sticky” for ADDC, CPB, SUBB and SUBBR.
These instructions can only clear Z.

Words:
Cycles:
Example 1: ADDC.B RAM100 ; Add WREG and C bit to RAM100
; (Byte mode)
Before After
Instruction Instruction
WREG| CC60 WREG | CC60
RAM100| 8006 RAM100| 8067
SR| 0001 |(C=1) SR| 0000
Example 2: ADDC RAM200, WREG ; Add RAM200 and C bit to the WREG

; (Word mode)

Before After
Instruction Instruction
WREG| 5600 WREG| 8A01
RAM200| 3400 RAM200| 3400
SR| 0001 |(C=1) SR| 000C [(N, OV =1)

DS70157B-page 5-14 Prelimin ary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

A DDC Add Literal to Wn with Carry

Syntax: {label:} ADDC{.B} #lit10, Wn

Operands: lit10 € [0 ... 255] for byte operation
lit10 € [0 ... 1023] for word operation
Wn e [WO ... W15]

Operation: litl0 + (Wn) + (C) > Wn

Status Affected: DC,N,0QV, Z, C

Encoding: | 1011 | o000 | iBkk | kkkk | kkkk | dddad |

Description: Add the 10-bit unsigned literal operand, the contents of the working
register Wn and the Carry bit and place the result back into the working
register Wn.

The ‘B’ hit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘K’ bits specify the literal operand.
The ‘d’ bits select the address of the working register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: For byte operations, the literal must be specified as an
unsigned value [0:255]. See Section 4.6 “Using 10-bit Literal
Operands” for information on using 10-bit literal operands in
Byte mode.

3: The Zflagis “sticky” for ADDC, CPB, SUBB and SUBBR. These
instructions can only clear Z.

Words:
Cycles:
Example 1: ADDC.B #0XFF, W7 ; Add -1 and C bit to W7 (Byte mode)
Before After
Instruction Instruction
W7| 12CO0 W7 | 12BF
SR| 0000 |(C=0) SR| 0009 [(N,C=1)
Example 2: ADDC #OXFF, W1 ; Add 255 and C bit to Wl (Word mode)
Before After
Instruction Instruction
W1| 12CO0 W1| 13CO0

SR| 0001 |(C=1) SR| 0000

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-15

dsPIC30F/33F Programmer’s Reference Manual

ADDC

Add Wb to Short Literal with Carry

Syntax: {label:} ADDC{.B} Wb, #it5, wd
[Wd]
[Wd++]
(Wd--]
[++Wd]
[--Wd]
Operands: Wb e [WO ... W15]
lits € [0 ... 31]
Wd e [WO ... W15]
Operation: (Wb) + lit5 + (C) - wd
Status Affected: DC,N,0V, Z,C
Encoding: | 0100 | 1www | wBaq qddd d11k Kkkk
Description: Add the contents of the base register Wb, the 5-bit unsigned short literal
operand and the Carry bit and place the result in the destination register
Wd. Register direct addressing must be used for Wb. Register direct or
indirect addressing may be used for Wd.
The ‘W’ bits select the address of the base register.
The ‘B’ hit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the destination register.
The ‘K’ bits provide the literal operand, a five-bit integer number.

Note 1. The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR. These

instructions can only clear Z.

Words:
Cycles:
Example 1: ADDC.B Wo, #0x1F, [W7] ; Add WO, 31 and C bit (Byte mode)
; Store the result in [W7]
Before After

Instruction Instruction

W0 | CC80 WO0| CC80

W7| 12CO0 W7| 12CO0

Data 12C0| BO000O Data 12C0| BO9F

SR| 0000|(C=0) SR| 0008|(N=1)
Example 2: ADDC W3, #0x6, [--W4] ; Add W3, 6 and C bit (Word mode)
; Store the result in [--W4]
Before After

Instruction Instruction

W3| 6006 w3 6006

W4 | 1000 w4 OFFE

Data OFFE | DDEE Data OFFE 600D

Data 1000 | DDEE Data 1000| DDEE

SR| 0001 |[(C=1) SR| 0000

DS70157B-page 5-16

Prelimi nary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

A DDC Add Wb to Ws with Carry

Syntax: {label:} ADDC{.B} Wb, Ws, wd
[Ws], [wd]
[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[--Ws], [--wd]
Operands: Wb € [WO ... W15]

Ws € [WO ... W15]
Wd e [WO ... W15]

Operation: (Wb) + (Ws) + (C) > Wd

Status Affected: DC,N, 0V, Z, C

Encoding: | 0100 | lwww | wBgqg gddd dppp | ssss |
Description: Add the contents of the source register Ws, the contents of the base

register Wb and the Carry bit and place the result in the destination
register Wd. Register direct addressing must be used for Wb. Either
register direct or indirect addressing may be used for Ws and Wd.

The ‘W’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2. The Z flag is “sticky” for ADDC, CPB, SUBB and SUBBR.
These instructions can only clear Z.

Words:
Cycles:

Example 1: ADDC.B WO, [Wl++], [W2++] ; Add WO, [W1l] and C bit (Byte mode)
; Store the result in [W2]
; Post-increment W1, W2

Before After
Instruction Instruction
W0 | CC20 W0 | CC20
w1i| 0800 W1i| 0801
w2 | 1000 W2 | 1001
Data 0800 | AB25 Data 0800 | AB25
Data 1000 | FFFF Data 1000| FF46
SR| 0001 [(C=1) SR| 0000

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-17

dsPIC30F/33F Programmer’s Reference Manual

Example 2: ADDC

W3, [W2++], [Wl++]

Before
Instruction
Ww1i| 1000 w1
w2 | 2000 w2
wW3| 0180 w3
Data 1000 | 8000 Data 1000
Data 2000| 2500 Data 2000
SR| 0001 |[(C=1) SR

; Add W3,

[W2] and C bit (Word mode)

; Store the result in [W1]
; Post-increment W1, W2

After
Instruction

1002

2002

0180

2681

2500

0000

DS70157B-page 5-18

Preliminary

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

AND AND f and WREG

Syntax: {label:} AND{.B} f {{\WREG}

Operands: fe[0..8191]

Operation: ().AND.(WREG) — destination designated by D

Status Affected: N, Z

Encoding: | 1011 | o110 | oBDf FEEF FEFE FEEF
Description: Compute the logical AND operation of the contents of the default working

register WREG and the contents of the file register and place the result in
the destination register. The optional WREG operand determines the
destination register. If WREG is specified, the result is stored in WREG.
If WREG is not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.

Words:
Cycles: 1
Example 1: AND.B RAM100 ; AND WREG to RAM100 (Byte mode)
Before After
Instruction Instruction
WREG| CC80 WREG | CC80
RAM100| FFCO RAM100| FF80
SR| 0000 SR| 0008 |[(N=1)
Example 2: AND RAM200, WREG ; AND RAM200 to WREG (Word mode)
Before After
Instruction Instruction
WREG| CC80 WREG| 0080
RAM200| 12CO0 RAM200| 12CO
SR| 0000 SR| 0000

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-19

dsPIC30F/33F Programmer’s Reference Manual

AND

AND Literal and Wd

Syntax: {label:} AND{.B} #lit10, Wn
Operands: lit10 € [0 ... 255] for byte operation
lit10 € [0 ... 1023] for word operation
Wn e [WO ... W15]
Operation: lit10.AND.(Wn) — Wn
Status Affected: N, Z
Encoding: | 1011 | ooto | oBkk | kkkk | kkkk | dddd |
Description: Compute the logical AND operation of the 10-bit literal operand and the
contents of the working register Wn and place the result back into the
working register Wn. Register direct addressing must be used for Wn.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘K’ bits specify the literal operand.
The ‘d’ bits select the address of the working register.

Note 1. The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: For byte operations, the literal must be specified as an
unsigned value [0:255]. See Section 4.6 “Using 10-bit Literal
Operands” for information on using 10-bit literal operands in
Byte mode.
Words:
Cycles:
Example 1: AND.B #0x83, W7 ; AND 0x83 to W7 (Byte mode)
Before After
Instruction Instruction
W7| 12C0 W7 | 1280
SR| 0000 SR| 0008 |(N=1)
Example 2: AND #0x333, Wl ; AND 0x333 to W1 (Word mode)
Before After
Instruction Instruction
w1| 12DO0 wi1| 0210
SR| 0000 SR| 0000
DS70157B-page 5-20 Prelimin ary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

AND AND Wb and Short Literal
Syntax: {label:} AND{.B} Wh, #lit5, wd
[Wd]
[(Wd++]
[Wd--]
[++Wd]
[--wd]
Operands: Wb e [WO ... W15]
lit5 € [0 ... 31]
wd e [WO ... W15]
Operation: (Wb).AND.lit5 — Wd
Status Affected: N, Z
Encoding: | o110 | oww | wBaq qddd a1tk | ik |
Description: Compute the logical AND operation of the contents of the base register

Wb and the 5-bit literal and place the result in the destination register Wd.
Register direct addressing must be used for Whb. Either register direct or
indirect addressing may be used for Wd.

The ‘W’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘K’ bits provide the literal operand, a five-bit integer number.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words:
Cycles:
Example 1: AND.B WO, #0x3, [Wl++] ; AND WO and 0x3 (Byte mode)
; Store to [W1]
; Post-increment W1
Before After
Instruction Instruction
WO | 23A5 WO | 23A5
Wi1i| 2211 W1| 2212
Data 2210 | 9999 Data 2210| 0199
SR| 0000 SR| 0000
Example 2: AND WO, #0x1F, W1 ; AND WO and 0x1F (Word mode)

; Store to Wl

Before After
Instruction Instruction o
WO0| 6723 WO | 6723 8
W1| 7878 W1| 0003 o
SR| 0000 SR| 0000 el
=
>
wn

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-21

dsPIC30F/33F Programmer’s Reference Manual

AND

And Wb and Ws

Syntax: {label:} AND{.B} Wh, Ws, wd
[Ws], [wd]
[Ws++], [Wd++]
[Ws--], (Wd--]
[++Ws], [++wWd]
[--Ws], [--Wd]
Operands: Wb € [WO ... W15]
Ws e [WO ... W15]
wd e [WO ... W15]
Operation: (Wb).AND.(Ws) — Wd
Status Affected: N, Z
Encoding: | 0110 | owww | wBgq gddd dppp ‘ ssss |
Description: Compute the logical AND operation of the contents of the source register
Ws and the contents of the base register Wb and place the result in the
destination register Wd. Register direct addressing must be used for Wb.
Either register direct or indirect addressing may be used for Ws and Wd.
The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words:
Cycles:
Example 1: AND.B WO, W1 [W2++] ; AND WO and W1, and
; store to [W2] (Byte mode)
; Post-increment W2
Before After
Instruction Instruction
WO0| AA55 WO0| AA55
wi| 2211 wi| 2211
w2| 1001 Ww2| 1002
Data 1000| FFFF Data 1000| 11FF
SR| 0000 SR| 0000

DS70157B-page 5-22

Prelimi nary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2: AND WO, [Wl++], W2 ; AND WO and [W1l], and
; store to W2 (Word mode)
; Post-increment W1

Before After
Instruction Instruction
WO0| AA55 WO0| AA55
Wi 1000 W1 1002
W2| 55AA W2 2214
Data 1000 2634 Data 1000 2634
SR| 0000 SR| 0000

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-23

dsPIC30F/33F Programmer’s Reference Manual

ASR

Arithmetic Shift Right f

Syntax: {label’}

ASR{B} f

Operands: fe[0..8191]
For byte operation:

Operation:

(f<7>) — Dest<7>
(f<7>) — Dest<6>
(f<6:1>) — Dest<5:0>
(f<0>) > C

For word operation:

Status Affected:

(f<15>) — Dest<15>
(f<15>) — Dest<14>
(f<14:1>) — Dest<13:0>
(f<0>) > C

N

N,Z, C

{ WREG}

Encoding: ‘ 1101 ‘ 0101 ‘

1BDE

FEFE FEEF ‘ FEFE ‘

Description:

Words:
Cycles:

Shift the contents of the file register one bit to the right and place the
result in the destination register. The Least Significant bit of the file
register is shifted into the Carry bit of the STATUS Register. After the shift
is performed, the result is sign-extended. The optional WREG operand
determines the destination register. If WREG is specified, the result is
stored in WREG. If WREG is not specified, the result is stored in the file

register.

The ‘B’ bit selects byte or word operation (‘0’ for word, 1’ for byte).
The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1:

The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Example 1: ASR.B RAM400, WREG

|
WREG
RAM400
SR

Before
nstruction

0600
0823
0000

Example 2: ASR RAM200

RAM200
SR

Before
Instruction

8009
0000

Instruction

WREG
RAM400
SR

RAM200
SR

7

: The WREG is set to working register WO.

ASR RAM400 and store to WREG

; (Byte mode)

After

0611

0823

0001

7

After

(C=1)

ASR RAM200 (Word mode)

Instruction

C004

0009

(N,C=1)

DS70157B-page 5-24

Preliminary

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

ASR Arithmetic Shift Right Ws

Syntax: {label:} ASR{.B} Ws, wd
[Ws], [wd]
[Ws++], [Wd++]
[Ws--], (Wd--]
[++Ws], [++Wd]
[--Ws], [--wd]

Operands: Ws e [WO ... W15]

Wd e [WO ... W15]
Operation: For byte operation:

(Ws<7>) —» Wd<7>
(Ws<7>) —» Wd<6>
(Ws<6:1>) —» Wd<5:0>
(Ws<0>) —» C

For word operation:
(Ws<15>) —» Wd<15>
(Ws<15>) —» Wd<14>
(Ws<14:1>) —» Wd<13:0>
(Ws<0>) - C

e

Status Affected: N, Z, C
Encoding: | 1101 | 0001 | 1Bgg gddd dppp ‘ ssss |

Description: Shift the contents of the source register Ws one bit to the right and place
the result in the destination register Wd. The Least Significant bit of Ws is
shifted into the Carry bit of the STATUS register. After the shift is per-
formed, the result is sign-extended. Either register direct or indirect
addressing may be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words:
Cycles:

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-25

dsPIC30F/33F Programmer’s Reference Manual

Example 1: ASR.B [WO++1, [Wl++] ; ASR [WO0] and store to [W1l] (Byte mode)
; Post-increment WO and W1

Before After
Instruction Instruction
WO 0600 WO0| 0601
w1l 0801 W1l| 0802
Data 600 2366 Data 600 2366
Data 800| FFCO Data 800| 33CO
SR 0000 SR 0000
Example 2: ASR W12, W13 ; ASR W12 and store to W13 (Word mode)
Before After
Instruction Instruction
W12 | ABO1 W12 | ABO1l
W13| 0322 W13| D580
SR| 0000 SR| 0009 | (N,C=1)

DS70157B-page 5-26 Prelimin ary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

ASR

Arithmetic Shift Right by Short Literal

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1:

Example 2:

Example 3:

{label:} ASR

Wb € [WO ... W15]
lit4 e [0...15]
Wnd e [WO ... W15]

lit4<3:0> — Shift_Val

Wh,

#lit4,

Whb<15> — Wnd<15:15-Shift_Val + 1>
Whb<15:Shift_Val> — Wnd<15-Shift_Val:0>

N, Z

Wnd

1101 1110

1lwww

wddd

d100 ‘ Kkkk |

Arithmetic shift right the contents of the source register Wb by the 4-bit

unsigned literal and store the result in the destination register Wnd. After
the shift is performed, the result is sign-extended. Direct addressing must
be used for Wb and Wnd.

The ‘w’ bits select the address of the base register.

The ‘d’ bits select the destination register.
The ‘K’ bits provide the literal operand.

Note:
1
ASR WO, #0x4, W1
Before
Instruction
WO | O060F
w1 1234
SR 0000
ASR WO, #0x6, Wl
Before
Instruction
WO0| 80FF
w1 0060
SR 0000
ASR WO, #O0xF, Wl
Before
Instruction
WO | 70FF
W1| CC26
SR 0000

This instruction operates in Word mode only.

; ASR WO by 4 and store to W1

; ASR WO by 6 and store to W1

N=1)

; ASR WO by 15 and store to W1

After
Instruction
WO | O060F
W1| 0060
SR| 0000
After
Instruction
WO | 80FF
W1| FEO3
SR| 0008 | (
After
Instruction
WO| 70FF
W1| 0000
SR| 0002

(z=1)

© 2005 Microchip Technology Inc.

Preliminary

DS70157B-page 5-27

)
M
0
)
=
i=l
=
o
>
n

dsPIC30F/33F Programmer’s Reference Manual

ASR Arithmetic Shift Right by Wns
Syntax: {label:} ASR Wh, Whns, Wnd
Operands: Wb e [WO ... W15]

Whns € [WO0 ...W15]
Wnd e [WO ... W15]
Operation: Wns<3:0> — Shift_Val
Wb<15> — Wnd<15:15-Shift_Val + 1>
Wb<15:Shift_Val> —» Wnd<15-Shift_Val:0>
Status Affected: N, Z

Encoding: 1101 1110 ‘ lwww | wddd ‘ dooo ssss

Description: Arithmetic shift right the contents of the source register Wb by the 4 Least
Significant bits of Wns (up to 15 positions) and store the result in the
destination register Wnd. After the shift is performed, the result is
sign-extended. Direct addressing must be used for Wb, Wns and Wnd.

The ‘W’ bits select the address of the base register.
The ‘d’ bits select the destination register.
The ‘s’ bits select the source register.

Note 1: This instruction operates in Word mode only.
2: If Wns is greater than 15, Wnd = 0x0 if Wb is positive, and
Wnd = OxFFFF if Wb is negative.

Words:
Cycles:
Example 1: ASR WO, W5, W6 ; ASR WO by W5 and store to W6
Before After
Instruction Instruction
WO | 80FF WO0| 80FF
W5| 0004 W5| 0004
W6 2633 W6 | F80F
SR 0000 SR 0000

Example 2: ASR WO, W5, W6 ; ASR WO by W5 and store to W6

Before After
Instruction Instruction
WO 6688 WO 6688
W5| 000A W5| 000A
W6 | FFOO0 W6| 0019
SR 0000 SR 0000

Example 3: ASR W11, W12, W13 ; ASR W1l by W12 and store to W13

Before After
Instruction Instruction
w11 8765 w11 8765
W12| 88E4 W12| 88E4
W13| ABA5 w13 F876
SR 0000 SR 0008 | (N =1)

DS70157B-page 5-28 Prelimin ary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

BCLR Bit Clear f

Syntax: {label:} BCLR{.B} f, #bit4

Operands: fe [0 ... 8191] for byte operation
fe [0 ... 8190] (even only) for word operation
bit4 € [0 ... 7] for byte operation
bit4 € [0 ... 15] for byte operation

Operation: 0 — f<bit4>

Status Affected: None

Encoding: | 1010 | 1001 | wbbf | ffef | ffef | fffb |
Description: Clear the bit in the file register f specified by ‘bit4’. Bit numbering begins

with the Least Significant bit (bit 0) and advances to the Most Significant
bit (bit 7 for byte operations, bit 15 for word operations).

The ‘b’ bits select value bit4 of the bit position to be cleared.
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the file register
address must be word-aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.

Words:
Cycles:
Example 1: BCLR.B 0x800, #0x7 ; Clear bit 7 in 0x800
Before After
Instruction Instruction
Data 0800| 66EF Data 0800 | 666F
SR 0000 SR 0000
Example 2: BCLR 0x400, #0x9 ; Clear bit 9 in 0x400
Before After
Instruction Instruction
Data 0400| AA55 Data 0400| A855
SR 0000 SR 0000

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-29

dsPIC30F/33F Programmer’s Reference Manual

BCLR

Bit Clear in Ws
Syntax: {label:} BCLR{.B} = Ws, #bit4
[Ws],
[Ws++],
[VVS"]!
[++Ws],
[--Ws],
Operands: Ws e [WO ... W15]
bit4 € [0 ... 7] for byte operation
bit4 € [0 ... 15] for word operation
Operation: 0 — Ws<bhit4>
Status Affected: None
Encoding: | 1010 | 0001 | bbbb ‘ 0B0O ‘ Oppp | ssss |
Description: Clear the bit in register Ws specified by ‘bit4’. Bit numbering begins with
the Least Significant bit (bit 0) and advances to the Most Significant bit
(bit 7 for byte operations, bit 15 for word operations). Register direct or
indirect addressing may be used for Ws.
The ‘b’ bits select value bit4 of the bit position to be cleared.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the source/destination register.
The ‘p’ bits select the source Address mode.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the source
register address must be word-aligned.
3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.
Words:
Cycles:
Example 1: BCLR.B W2, #0x2 ; Clear bit 3 in W2
Before After
Instruction Instruction
W2| F234 W2| F230
SR| 0000 SR| 0000
Example 2: BCLR [WO++], #0x0 ; Clear bit 0 in [WO0]
; Post-increment WO
Before After
Instruction Instruction
W0 | 2300 W0 | 2302
Data 2300| 5607 Data 2300| 5606
SR| 0000 SR| 0000
DS70157B-page 5-30 Prelimin ary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

B RA Branch Unconditionally

Syntax: {label:} BRA Expr
Operands: Expr may be a label, absolute address or expression.

Expr is resolved by the linker to a Slit16, where Slit16 € [-32768 ... +32767].
Operation: (PC +2) +2*8litl6 —» PC

NOP — Instruction Register
Status Affected: None

Encoding: ‘ 0011 ‘ 0111 nnnn nnnn nnnn nnnn

Description: The program will branch unconditionally, relative to the next PC. The offset
of the branch is the two’s complement number ‘2 * Slit16’, which supports
branches up to 32K instructions forward or backward. The Slit16 value is
resolved by the linker from the supplied label, absolute address or
expression. After the branch is taken, the new address will be (PC +2) + 2 *
Slit16, since the PC will have incremented to fetch the next instruction.

The ‘n’ bits are a signed literal that specifies the number of program words
offset from (PC + 2).

Words: 1
Cycles: 2
Example 1: 002000 HERE: BRA THERE ; Branch to THERE
002002
002004
002006
002008
00200A THERE:
00200C
Before After
Instruction Instruction
PC 00 2000 PC 00 200A
SR 0000 SR 0000
Example 2: 002000 HERE: BRA THERE+0x2 ; Branch to THERE+0x2
002002
002004
002006
002008
00200A THERE:
00200C
Before After
Instruction Instruction
PC 00 2000 PC 00 200C
SR 0000 SR 0000
Example 3: 002000 HERE: BRA 0x1366 ; Branch to 0x1366
002002 o
002004 &
)
O
Before After =,
Instruction Instruction =
PC 00 2000 PC 00 1366 g
SR 0000 SR 0000 wn

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-31

dsPIC30F/33F Programmer’s Reference Manual

BRA

Computed Branch

Syntax:

Operands:
Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1:

{label:}

BRA

Wn e [WO ... W15]

(PC+2)+(2*Wn) —» PC
NOP — Instruction Register

None

‘ 0000 ‘

0001

0110

‘ 0000 ‘ 0000 ‘ ssss |

The program will branch unconditionally, relative to the next PC. The
offset of the branch is the sign-extended 17-bit value (2 * Wn), which
supports branches up to 32K instructions forward or backward. After this
instruction executes, the new PC will be (PC + 2) + 2 * Wn, since the PC
will have incremented to fetch the next instruction.

The ‘s’ bits select the source register.

1
2

002000 HERE:
002002

002108

00210A TABLE7:

00210C

Before
Instruction

PC 00 2000

w7 0084

SR 0000

BRA W7

PC
W7
SR

; Branch forward

(242*W7)

After
Instruction

00 2108

0084

0000

DS70157B-page 5-32

Preliminary

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

B RA C Branch if Carry

Syntax: {label:} BRA C, Expr
Operands: Expr may be a label, absolute address or expression.

Expr is resolved by the linker to a Slit16, where Slit16 € [-32768 ... +32767].
Operation: Condition =C

If (Condition)
(PC +2)+2*8litl6 —» PC
NOP — Instruction Register

Status Affected: None
Encoding: | 0011 | 0001 nnnn nnnn nnnn nnnn

Description: If the Carry flag bit is ‘1, then the program will branch relative to the next PC.
The offset of the branch is the two’s complement number ‘2 * Slit16’, which
supports branches up to 32K instructions forward or backward. The Slit16
value is resolved by the linker from the supplied label, absolute address or
expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the
PC will have incremented to fetch the next instruction. The instruction then
becomes a two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a 16-bit signed literal that specify the offset from (PC + 2) in
instruction words.

Words: 1
Cycles: 1 (2 if branch taken)
Example 1: 002000 HERE: BRA C, CARRY ; If C is set, branch to CARRY
002002 NO_C: ... ; Otherwise... continue
002004 ...
002006 GOTO THERE
002008 CARRY:
00200A
00200C THERE:
00200E
Before After
Instruction Instruction
PC 00 2000 PC 00 2008
SR 0001|(C=1) SR 0001|(C=1)
Example 2: 002000 HERE: BRA C, CARRY ; If C is set, branch to CARRY
002002 NO_C: .. ; Otherwise... continue
002004 o
002006 GOTO THERE
002008 CARRY:
00200A
00200C THERE:
00200E
O
8
Before After o
Instruction Instruction _é‘
PC 00 2000 PC 00 2002 =
o
SR 0000 SR 0000 S
0]

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-33

dsPIC30F/33F Programmer’s Reference Manual

Example 3:

Example 4:

006230 HERE: BRA C, CARRY
006232 NO_C:

006234 e

006236 GOTO THERE
006238 CARRY:

00623A

00623C THERE:

00623E

Before
Instruction

PC[006230 PC
SR 0001 |(C = 1) SR

006230 START:

006232

006234 CARRY:

006236

006238

00623A C

00623C HERE: BRA C, CARRY
00623E

Before
Instruction

Pc[00623C PC
SR 0001 |(C = 1) SR

7

If C is set, branch to CARRY

; Otherwise... continue
After
Instruction
00 6238
0001 |(C = 1)

7

If C is set, branch to CARRY

; Otherwise... continue
After
Instruction
00 6234
0001 {(C=1)

DS70157B-page 5-34

Preliminary

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

B RA G E Branch if Signed Greater Than or Equal

Syntax: {label:} BRA GE, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slitl6 e [-32768 ... +32767].

Operation: Condition = (N&&OV)||(N&&!OV)
If (Condition)
(PC +2) + 2 *Slitl6 — PC
NOP — Instruction Register

Status Affected: None
Encoding: ‘ 0011 | 1101 | nnnn | nnnn | nnnn nnnn
Description: If the logical expression (N&&OV)||(IN&&!OV) is true, then the program

will branch relative to the next PC. The offset of the branch is the two’s
complement number ‘2 * Slit16’, which supports branches up to 32K
instructions forward or backward. The Slit16 value is resolved by the
linker from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a 16-bit signed literal that specify the offset from (PC + 2)
in instruction words.

Note: The assembler will convert the specified label into the offset to

be used.
Words: 1
Cycles: 1 (2 if branch taken)
Example 1: 007600 LOOP:
007602
007604
007606 L.
007608 HERE: BRA GE, LOOP ; If GE, branch to LOOP
00760A NO_GE: A ; Otherwise... continue
Before After
Instruction Instruction
PC 00 7608 PC 00 7600
SR 0000 SR 0000
Example 2: 007600 LOOP:
007602
007604
007606 L.
007608 HERE: BRA GE, LOOP ; If GE, branch to LOOP
00760A NO_GE: ... ; Otherwise... continue
Before After 8
Instruction Instruction 4
PC 00 7608 PC 00 760A -E_;
SR 0008 |(N =1) SR 0008 |(N =1) g.
>
wn

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-35

dsPIC30F/33F Programmer’s Reference Manual

BRA GEU

Branch if Unsigned Greater Than or Equal

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1:

{label:} BRA GEU, Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16 offset that supports an offset
range of [-32768 ... +32767] program words.
Condition = C
If (Condition)
(PC +2) +2*Slitl6 — PC
NOP — Instruction Register

None

0001 | nnnn nnnn nnnn ‘ nnnn

| 0011 ‘

If the Carry flag is ‘1’, then the program will branch relative to the next
PC. The offset of the branch is the two’s complement number ‘2 *
Slit16’, which supports branches up to 32K instructions forward or
backward. The Slit16 value is resolved by the linker from the supplied
label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16,
since the PC will have incremented to fetch the next instruction. The
instruction then becomes a two-cycle instruction, with a NOP executed
in the second cycle.

The ‘n’ bits are a 16-bit signed literal that specify the offset from
(PC + 2) in instruction words.

Note: This instruction is identical to the BRA C, Expr (Branch if

Carry) instruction and has the same encoding. It will reverse
assemble as BRA ¢, Slitl6.

1
1 (2 if branch taken)

002000 HERE: BRA GEU, BYPASS ; If C is set, branch
002002 NO_GEU: L. ; to BYPASS
002004 ... ; Otherwise... continue
002006
002008 L.
00200A GOTO THERE
00200C BYPASS:
00200E
Before After

Instruction Instruction
PC 00 2000 PC 00 200C
SR 0001 |(C=1) SR 0001 |(C=1)

DS70157B-page 5-36

Prelimi nary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

B RA GT Branch if Signed Greater Than

Syntax: {label:} BRA GT, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slitl6 € [-32768 ... +32767].

Operation: Condition = (1Z&&N&&OV)||('Z&&!N&&!OV)
If (Condition)
(PC +2)+2*38litl6 —» PC
NOP — Instruction Register

Status Affected: None
Encoding: | 0011 | 1100 | nnnn | nnnn | nnnn | nnnn
Description: If the logical expression (IZ&&N&&OV)||(IZ&&!N&&!OV) is true, then the

program will branch relative to the next PC. The offset of the branch is the
two’s complement number ‘2 * Slit16’, which supports branches up to 32K
instructions forward or backward. The Slit16 value is resolved by the
linker from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a 16-bit signed literal that specify the offset from (PC + 2)
in instruction words.

Words: 1
Cycles: 1 (2 if branch taken)

Example 1: 002000 HERE: BRA GT, BYPASS ; If GT, branch to BYPASS
002002 NO_GT: ... ; Otherwise... continue
002004
002006
002008 ...
00200A GOTO THERE
00200C BYPASS:
00200E

Before After
Instruction Instruction

PC|[002000 PCc|[00200C
SR 0001 |(C = 1) SR 0001](C = 1)

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-37

dsPIC30F/33F Programmer’s Reference Manual

BRA GTU

Branch if Unsigned Greater Than

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1:

{label:} BRA

GTU,

Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slitl6 € [-32768 ... +32767].

C
If

N

ondition = (C&&!Z)
(Condition)

(PC +2) +2*Slitl6 — PC
NOP — Instruction Register

one

0011 | 1110

| nnnn

| nnnn nnnn nnnn

If the logical expression (C&&!Z) is true, then the program will branch
relative to the next PC. The offset of the branch is the two’s complement
number ‘2 * Slitl6’, which supports branches up to 32K instructions for-
ward or backward. The Slit16 value is resolved by the linker from the
supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC + 2).

1

1 (2 if branch taken)
002000 HERE: BRA GTU, BYPASS ; If GTU, branch to BYPASS
002002 NO_GTU: ; Otherwise... continue
002004
002006
002008 ..
00200A GOTO THERE
00200C BYPASS:
00200E

Before After

Instruction Instruction
PC 00 2000 PC 00 200C
SR 0001 ((C=1) SR 0001{(C=1)

DS70157B-page 5-38

Preliminary

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

B RA I_ E Branch if Signed Less Than or Equal

Syntax: {label:} BRA LE, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 e [-32768 ... +32767].

Operation: Condition = Z||(N&&!OV)||(IN&&QOV)
If (Condition)
(PC +2) +2*38litl6 —» PC
NOP — Instruction Register

Status Affected: None
Encoding: | 0011 | 0100 ‘ nnnn ‘ nnnn | nnnn nnnn

Description: If the logical expression (Z||(N&&!OV)||(IN&&OV)) is true, then the
program will branch relative to the next PC. The offset of the branch is the
two’s complement number ‘2 * Slit16’, which supports branches up to 32K
instructions forward or backward. The Slit16 value is resolved by the linker
from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC + 2).

Words: 1
Cycles: 1 (2 if branch taken)
Example 1: 002000 HERE: BRA LE, BYPASS ; If LE, branch to
002002 NO_LE: .o BYPASS
002004 ... ; Otherwise... continue
002006
002008 .o
00200A GOTO THERE
00200C BYPASS:
00200E
Before After
Instruction Instruction
PC 00 2000 PC 00 2002
SR 0001 |(C=1) SR 0001 |(C=1)

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-39

dsPIC30F/33F Programmer’s Reference Manual

BRA LEU

Branch if Unsigned Less Than or Equal

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1:

{label:} BRA

LEU,

Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slitl6 e [-32768 ... +32767].
Condition = IC||Z
If (Condition)
(PC +2) +2*38litl6 —» PC
NOP — Instruction Register

None

0011 ‘ 0110

‘ nnnn ‘ nnnn nnnn nnnn

If the logical expression (!C||Z) is true, then the program will branch
relative to the next PC. The offset of the branch is the two’s complement
number ‘2 * Slitl6’, which supports branches up to 32K instructions for-
ward or backward. The Slit16 value is resolved by the linker from the
supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second

Cy

cle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC + 2).

1

1 (2 if branch taken)

002000
002002
002004
002006
002008
00200A
00200C
00200E

In

HERE: BRA LEU, BYPASS ; If LEU, branch to BYPASS

NO LEU:

GOTO THERE

BYPASS:

Before
struction

PC

00 2000

SR

0001|(C=1)

PC
SR

; Otherwise... continue

After
Instruction

00 200C

0001 |(C = 1)

DS70157B-page 5-40

Preliminary

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

B RA I_T Branch if Signed Less Than

Syntax: {label:} BRA LT, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slitl6 e [-32768 ... +32767].

Operation: Condition = (N&&!OV)||(IN&&OV)
If (Condition)
(PC +2) +2*Slitl6 —» PC
NOP — Instruction Register

Status Affected: None
Encoding: | 0011 | 0101 | nnnn | nnnn ‘ nnnn nnnn
Description: If the logical expression ((N&&!OV)||(IN&&QV)) is true, then the program

will branch relative to the next PC. The offset of the branch is the two’s
complement number ‘2 * Slit16’, which supports branches up to 32K
instructions forward or backward. The Slit1l6 value is resolved by the
linker from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC + 2).

Words: 1
Cycles: 1 (2 if branch taken)

Example 1: 002000 HERE: BRA LT, BYPASS ; If LT, branch to BYPASS
002002 NO_LT: ... ; Otherwise... continue
002004
002006
002008 .o
00200A GOTO THERE
00200C BYPASS:
00200E

Before After
Instruction Instruction

Pc[002000 PC[002002
SR 0001(C = 1) SR 0001(C = 1)

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-41

dsPIC30F/33F Programmer’s Reference Manual

BRA LTU

Branch if Unsigned Less Than

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1:

{label:}

BRA LTU, Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slitl6 e [-32768 ... +32767].

Condition =!C
If (Condition)
(PC +2) +2*Silitl6 —» PC
NOP — Instruction Register
None
| 0011 ‘ 1001 nnnn nnnn nnnn nnnn

If the Carry flag is ‘0’, then the program will branch relative to the next PC.
The offset of the branch is the two’s complement number ‘2 * Slit16’,
which supports branches up to 32K instructions forward or backward. The
Slit16 value is resolved by the linker from the supplied label, absolute

address or

expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since

the PC will

have incremented to fetch the next instruction. The instruction

then becomes a two-cycle instruction, with a NOP executed in the second

cycle.

The ‘n’ bits
offset from

Note:

1

are a signed literal that specifies the number of instructions
(PC +2).

This instruction is identical to the BRA N¢, Expr (Branch if Not
Carry) instruction and has the same encoding. It will reverse
assemble as BRA NC, Slit16.

1 (2 if branch taken)

002000 HERE:

002002 NO_LTU
002004
002006
002008
00200A
00200C
00200E

BYPASS

Before
Instruction

BRA LTU, BYPASS ; If LTU, branch to BYPASS
; Otherwise... continue

GOTO THERE

After
Instruction

PC 00 2000

PC 00 2002

SR 0001

(C=1) SR 0001 (C = 1)

DS70157B-page 5-42

Preliminary

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

BRA N

Branch if Negative

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1:

{label:} BRA N, Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slitl6 e [-32768 ... +32767].
Condition = N
If (Condition)

(PC +2)+2*Slit16 — PC

NOP — Instruction Register.

None

‘ 0011 | 0011 nnnn nnnn nnnn nnnn

If the Negative flag is ‘1, then the program will branch relative to the next
PC. The offset of the branch is the two’s complement number ‘2 * Slit16’,
which supports branches up to 32K instructions forward or backward. The
Slitl6 value is resolved by the linker from the supplied label, absolute
address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC + 2).

1
1 (2 if branch taken)

002000 HERE: BRA N, BYPASS ; If N, branch to BYPASS
002002 NO_N: ... ; Otherwise... continue
002004

002006

002008 .o

00200A GOTO THERE

00200C BYPASS:

00200E

PC
SR

Before After
Instruction Instruction

00 2000 PC 00 200C

0008 |(N = 1) SR 0008 (N = 1)

© 2005 Microchip Technology Inc.

Preliminary DS70157B-page 5-43

)
M
0
)
=
i=l
=
o
>
n

dsPIC30F/33F Programmer’s Reference Manual

BRA NC

Branch if Not Carry

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1:

{label:} BRA

NC,

Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slitl6 € [-32768 ... +32767].
Condition = IC
If (Condition)
(PC +2) +2*Slitl6 —» PC
NOP — Instruction Register

None

0011 ‘ 1001

nnnn

nnnn nnnn nnnn

If the Carry flag is ‘0’, then the program will branch relative to the next PC.
The offset of the branch is the two’s complement number ‘2 * Slit16’,
which supports branches up to 32K instructions forward or backward. The
Slitl6 value is resolved by the linker from the supplied label, absolute
address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC + 2).

1

1 (2 if branch taken)

002000 HERE: BRA NC, BYPASS ; If NC, branch to BYPASS
002002 NO_NC: ; Otherwise... continue
002004
002006
002008 ..
00200A GOTO THERE
00200C BYPASS:
00200E
Before After

Instruction Instruction
PC 00 2000 PC 00 2002
SR 0001 |(C=1) SR 0001 |(C=1)

DS70157B-page 5-44

Preliminary

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

BRA NN

Branch if Not Negative

Syntax: {label:} BRA NN, Expr
Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slitl6 e [-32768 ... +32767].
Operation: Condition = IN
If (Condition)
(PC +2) +2*8litl6 —» PC
NOP — Instruction Register
Status Affected: None
Encoding: ‘ 0011 ‘ 1011 nnnn nnnn nnnn nnnn
Description: If the Negative flag is ‘0’, then the program will branch relative to the next
PC. The offset of the branch is the two’s complement number ‘2 * Slit16’,
which supports branches up to 32K instructions forward or backward. The
Slit16 value is resolved by the linker from the supplied label, absolute
address or expression.
If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.
The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC + 2).
Words: 1
Cycles: 1 (2 if branch taken)
Example1: 002000 HERE: BRA NN, BYPASS ; If NN, branch to BYPASS
002002 NO_NN: e ; Otherwise... continue
002004
002006
002008 A
00200A GOTO THERE
00200C BYPASS:
00200E
Before After
Instruction Instruction
PC 00 2000 PC 00 200C
SR 0000 SR 0000

© 2005 Microchip Technology Inc.

Preliminary DS70157B-page 5-45

)
M
0
)
=
i=l
=
o
>
n

dsPIC30F/33F Programmer’s Reference Manual

B RA NOV Branch if Not Overflow

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1:

{label:} BRA NOV, Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slitl6 e [-32768 ... +32767].
Condition = IOV
If (Condition)

(PC +2)+2*38litl6 — PC

NOP — Instruction Register

None

| 0011 | 1000 nnnn nnnn nnnn nnnn

If the Overflow flag is ‘0, then the program will branch relative to the next
PC. The offset of the branch is the two’s complement number ‘2 * Slit16’,
which supports branches up to 32K instructions forward or backward. The
Slit16 value is resolved by the linker from the supplied label, absolute
address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC + 2).

1
1 (2 if branch taken)

002000 HERE: BRA NOV, BYPASS ; If NOV, branch to BYPASS
002002 NO_NOV: ... ; Otherwise... continue
002004
002006
002008 ...
00200A GOTO THERE
00200C BYPASS:
00200E
Before After

Instruction Instruction
PC 00 2000 PC 00 200C
SR 0008 |(N =1) SR 0008 |(N=1)

DS70157B-page 5-46

Prelimi nary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

BRA NZ

Branch if Not Zero

Syntax: {label:} BRA NZ, Expr
Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slitl6 € [-32768 ... +32767].
Operation: Condition =1Z
If (Condition)
(PC +2) +2*8litl6 —» PC
NOP — Instruction Register
Status Affected: None
Encoding: | 0011 | 1010 nnnn nnnn nnnn nnnn
Description: If the Z flag is ‘0’, then the program will branch relative to the next PC. The
offset of the branch is the two’s complement number ‘2 * Slit16’, which
supports branches up to 32K instructions forward or backward. The Slit16
value is resolved by the linker from the supplied label, absolute address or
expression.
If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.
The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC + 2).
Words: 1
Cycles: 1 (2 if branch taken)
Example 1: 002000 HERE: BRA NZ, BYPASS ; If NZ, branch to BYPASS
002002 NO_NZ: ... ; Otherwise... continue
002004
002006
002008 L.
00200A GOTO THERE
00200C BYPASS:
00200E
Before After
Instruction Instruction
PC 00 2000 PC 00 2002
SR 0002 |(Z=1) SR 0002 |(Z = 1)

© 2005 Microchip Technology Inc.

Preliminary DS70157B-page 5-47

)
M
0
)
=
i=l
=
o
>
n

dsPIC30F/33F Programmer’s Reference Manual

BRA OA

Branch if Overflow Accumulator A

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1:

{label’}

BRA OA,

Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slitl6 € [-32768 ... +32767].

Condition = OA
If (Condition)
(PC +2)+2*3glitl6 — PC
NOP — Instruction Register
None
‘ 0000 | 1100 nnnn nnnn nnnn nnnn

If the Overflow Accumulator A flag is ‘1, then the program will branch
relative to the next PC. The offset of the branch is the two’s complement
number ‘2 * Slit1l6’, which supports branches up to 32K instructions
forward or backward. The Slit16 value is resolved by the linker from the
supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC + 2).

1

Note:

The assembler will convert the specified label into the offset to

be used.

1 (2 if branch taken)

002000 HERE: BRA OA, BYPASS ; If OA, branch to BYPASS
002002 NO_OA: ; Otherwise... continue
002004
002006
002008 ...
00200A GOTO THERE
00200C BYPASS:
00200E
Before After

Instruction Instruction
PC 00 2000 PC 00 200C
SR 8800 [(OA, OAB =1) SR 8800 |(OA, OAB =1)

DS70157B-page 5-48

Preliminary

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

B RA OB Branch if Overflow Accumulator B

Syntax: {label:} BRA OB, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slitl6 € [-32768 ... +32767].

Operation: Condition = OB
If (Condition)
(PC +2) +2*8litl6 —» PC
NOP — Instruction Register

Status Affected: None
Encoding: | 0000 ‘ 1101 nnnn nnnn nnnn nnnn
Description: If the Overflow Accumulator B flag is ‘1’, then the program will branch rel-

ative to the next PC. The offset of the branch is the two’s complement
number ‘2 * Slitl6’, which supports branches up to 32K instructions for-
ward or backward. The Slit16 value is resolved by the linker from the sup-
plied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC + 2).

Words: 1
Cycles: 1 (2 if branch taken)

Examgle 1: 002000 HERE: BRA OB, BYPASS ; If OB, branch to BYPASS
002002 NO_OB: I, ; Otherwise... continue
002004
002006
002008 ...
00200A GOTO THERE
00200C BYPASS:
00200E

Before After
Instruction Instruction

PC[002000 PC[002002
SR 8800 |(OA, OAB = 1) SR 8800 |(OA, OAB = 1)

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-49

dsPIC30F/33F Programmer’s Reference Manual

BRA OV

Branch if Overflow

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1:

{label:} BRA oV, Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 e [-32768 ... +32767)].

Condition = OV

If (Condition)
(PC +2) +2*Slitl6 —» PC
NOP — Instruction Register

None

‘ 0011 ‘ 0000 nnnn nnnn nnnn nnnn

If the Overflow flag is ‘1, then the program will branch relative to the next
PC. The offset of the branch is the two’'s complement number ‘2 * Slit16’,
which supports branches up to 32K instructions forward or backward. The
Slit16 value is resolved by the linker from the supplied label, absolute
address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC + 2).

1
1 (2 if branch taken)

002000 HERE: BRA OV, BYPASS ; If OV, branch to BYPASS
002002 NO_OV R ; Otherwise... continue
002004
002006
002008 .o
00200A GOTO THERE
00200C BYPASS:
00200E
Before After

Instruction Instruction
PC 00 2000 PC 00 2002
SR 0002 |(Z=1) SR 0002 |(Z=1)

DS70157B-page 5-50

Prelimi nary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

B RA SA Branch if Saturation Accumulator A

Syntax: {label:} BRA SA, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slitl6 e [-32768 ... +32767].

Operation: Condition = SA
If (Condition)
(PC +2)+2*Slitl6 — PC
NOP — Instruction Register

Status Affected: None
Encoding: ‘ 0000 ‘ 1110 nnnn nnnn nnnn nnnn
Description: If the Saturation Accumulator A flag is ‘1’, then the program will branch

relative to the next PC. The offset of the branch is the two's complement
number ‘2 * Slitl6’, which supports branches up to 32K instructions for-
ward or backward. The Slit16 value is resolved by the linker from the sup-
plied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC + 2).

Words: 1
Cycles: 1 (2 if branch taken)

Example 1: 002000 HERE: BRA SA, BYPASS ; If SA, branch to BYPASS
002002 NO_SA: A ; Otherwise... continue
002004
002006
002008 e
00200A GOTO THERE
00200C BYPASS:
00200E

Before After
Instruction Instruction

PC[002000 Pc[00 200C
SR 2400 |(SA, SAB=1) SR 2400 |(SA, SAB = 1)

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-51

dsPIC30F/33F Programmer’s Reference Manual

BRA SB

Branch if Saturation Accumulator B

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1:

{label:} BRA SB, Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 e [-32768 ... +32767].

Condition = SB

if (Condition)
(PC +2) +2*8litl6— PC
NOP — Instruction Register

None

‘ 0000 ‘ 1111 nnnn nnnn nnnn nnnn

If the Saturation Accumulator B flag is ‘1’, then the program will branch
relative to the next PC. The offset of the branch is the two’s complement
number ‘2 * Slitl6’, which supports branches up to 32K instructions for-
ward or backward. The Slit16 value is resolved by the linker from the
supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC + 2).

1
1 (2 if branch taken)

002000 HERE: BRA SB, BYPASS ; If SB, branch to BYPASS
002002 NO_SB: e ; Otherwise... continue
002004
002006
002008 ..
00200A GOTO THERE
00200C BYPASS:
00200E
Before After

Instruction Instruction
PC 00 2000 PC 00 2002
SR 0000 SR 0000

DS70157B-page 5-52

Prelimi nary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

BRA Z

Branch if Zero

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1:

{label:} BRA Z, Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slitl6 e [-32768 ... +32767].
Condition=2Z
if (Condition)

(PC +2) + 2 * Slitl6 — PC

NOP — Instruction Register
None

| o

011 | 0010 nnnn nnnn

nnnn nnnn

If the Zero flag is ‘1, then the program will branch relative to the next PC.
The offset of the branch is the two’s complement number ‘2 * Slit16’,
which supports branches up to 32K instructions forward or backward. The
Slit16 value is resolved by the linker from the supplied label, absolute
address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions

offs
1

et from (PC + 2).

1 (2 if branch taken)

002000
002002
002004
002006
002008
00200A
00200C
00200E

HERE: BRA Z, BYPASS ; If Z, branch to BYPASS
NO_Z: ... ; Otherwise... continue

GOTO THERE
BYPASS:

Before After

Instruction Instruction

PC

00 2000 PC 00 200C

SR

0002 (Z = 1) SR 0002

(z=1)

© 2005 Microchip Technology Inc.

Preliminary

DS70157B-page 5-53

)
M
0
)
=
i=l
=
o
>
n

dsPIC30F/33F Programmer’s Reference Manual

BSET Bit Set f

Syntax: {label:} BSET{.B} f, #bit4

Operands: fe [0 ... 8191] for byte operation
fe [0 ... 8190] (even only) for word operation
bit4 € [0 ... 7] for byte operation
bit4 € [0 ... 15] for word operation

Operation: 1 — f<hit4>

Status Affected: None

Encoding: | 1010 | 1000 | bbbf | ffff | ffff | fffb |
Description: Set the bit in the file register ‘' specified by ‘bit4’. Bit numbering begins

with the Least Significant bit (bit 0) and advances to the Most Significant
bit (bit 7 for byte operations, bit 15 for word operations).

The ‘b’ bits select value bit4 of the bit position to be set.
The ‘' bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the file register
address must be word-aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.

Words:
Cycles:
Example 1: BSET.B 0x601, #0x3 ; Set bit 3 in 0x601
Before After
Instruction Instruction
Data 0600 F234 Data 0600| FA34
SR 0000 SR| 0000
Example 2: BSET 0x444, #OXF ; Set bit 15 in 0x444
Before After
Instruction Instruction
Data 0444 5604 Data 0444 | D604
SR 0000 SR| 0000

DS70157B-page 5-54 Prelimin ary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

BSET Bit Set in Ws

Syntax: {label:} BSET{.B} Ws, #bitd
[WS],
[Ws++],
[\/\/S--]v
[++Ws],
[--WS]r

Operands: Ws e [WO ... W15]
bit4 € [0 ... 7] for byte operation
bit4 € [0 ... 15] for word operation

Operation: 1 — Ws<bhit4>

Status Affected: None

Encoding: | 1010 ‘ 0000 ‘ bbbb ‘ 0B0O ‘ Oppp | ssss |
Description: Set the bit in register Ws specified by ‘bit4’. Bit numbering begins with the

Least Significant bit (bit 0) and advances to the Most Significant bit (bit 7
for byte operations, bit 15 for word operations). Register direct or indirect
addressing may be used for Ws.

The ‘b’ bits select value bit4 of the bit position to be cleared.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source/destination register.

Note 1. The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the source
register address must be word-aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.

Words:
Cycles:
Example 1: BSET.B W3, #0x7 ; Set bit 7 in W3
Before After
Instruction Instruction
W3 0026 W3| 00A6
SR 0000 SR| 0000
Example 2: BSET [W4++], #0x0 ; Set bit 0 in [W4]

; Post-increment W4

Before After
Instruction Instruction
wW4| 6700 W4 | 6702
Data 6700 1734 Data 6700| 1735
SR 0000 SR| 0000

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-55

dsPIC30F/33F Programmer’s Reference Manual

BSW Bit Write in Ws

Syntax: {label:} BSW.C Ws, Wb
BSW.Z [ws],
[Ws++],
[Ws--],
[++Ws],
[--Ws],
Operands: Ws e [WO ... W15]
Wb e [WO ... W15]
Operation: For “.C” operation:

C — Ws<(Wb)>
For “.Z" operation (default):
Z — Ws<(Whb)>

Status Affected: None
Encoding: | 1010 | 1101 | ZWwWW | w000 | Oppp | ssss |
Description: The (Wb) bit in register Ws is written with the value of the C or z flag from

the STATUS register. Bit numbering begins with the Least Significant bit
(bit 0) and advances to the Most Significant bit (bit 15) of the working reg-
ister. Only the four Least Significant bits of Wb are used to determine the
destination bit number. Register direct addressing must be used for Wb,
and either register direct, or indirect addressing may be used for Ws.

The ‘Z’ bit selects the C or Z flag as source.

The ‘W’ bits select the address of the bit select register.
The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note: This instruction only operates in Word mode. If no extension is
provided, the “. z” operation is assumed.

Words: 1
Cycles:
Examgle 1: BSW.C W2, W3 ; Set bit W3 in W2 to the value
; of the C bit
Before After
Instruction Instruction
W2 F234 W2 | 7234
W3 111F W3| 111F

SR| 0002](z=1,C=0) SR| 0002|(Z=1,C=0)

Example 2: BSW.Z W2, W3 ; Set bit W3 in W2 to the complement
; of the Z bit

Before After
Instruction Instruction
W2| E235 W2| E234
W3| 0550 W3| 0550

SR| 0002[(z=1,C=0) SR| 0002|(Z=1,C=0)

DS70157B-page 5-56 Prelimin ary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 3: BSW.C [++WO0], We ; Set bit W6 in [W0++] to the value
; of the C bit

Before After
Instruction Instruction
WO 1000 WO0| 1002
W6 | 34A3 W6 | 34A3
Data 1002 2380 Data 1002 | 2388
SR| 0001|{(Z=0,C=1) SR| 0001|(Z=0,C=1)

Example 4: BSW [Wl--1, W5 ; Set bit W5 in [W1] to the
; complement of the Z bit
; Post-decrement W1

Before After
Instruction Instruction
w1 1000 W1| OFFE
W5| 888B W5| 888B
Data 1000| C4DD Data 1000 | CCDD
SR 0001 (C=1) SR| 0001|(C=1)

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-57

dsPIC30F/33F Programmer’s Reference Manual

BTG Bit Toggle f
Syntax: {label:} BTG{.B} f, #bit4
Operands: fe [0 ... 8191] for byte operation
fe [0 ... 8190] (even only) for word operation
bit4 € [0 ... 7] for byte operation
bit4 € [0 ... 15] for word operation
Operation: (H<hitd> — (fH<bitd>
Status Affected: None
Encoding: | 1010 | 1010 | bbb | frer | £fff | fffb |
Description: Bit ‘bit4’ in file register ‘f’ is toggled (complemented). For the bit4 oper-
and, bit numbering begins with the Least Significant bit (bit 0) and
advances to the Most Significant bit (bit 7 for byte operation, bit 15 for
word operation) of the byte.
The ‘b’ bits select value bit4, the bit position to toggle.
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the file register
address must be word-aligned.
3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.
Words:
Cycles:
Example 1: BTG.B 0x1001, #0x4 ; Toggle bit 4 in 0x1001
Before After
Instruction Instruction
Data 1000 | F234 Data 1000| EZ234
SR| 0000 SR| 0000
Example 2: BTG 0x1660, #0x8 ; Toggle bit 8 in RAM660
Before After
Instruction Instruction
Data 1660| 5606 Data 1660| 5706
SR| 0000 SR| 0000

DS70157B-page 5-58

Preliminary

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

BTG

Bit Toggle in Ws

Syntax: {label:} BTG{.B} Ws, #bit4
[Ws],
[Ws++],
[WS--]v
[++Ws],
[--WS]1
Operands: Ws e [WO ... W15]
bit4 € [0 ... 7] for byte operation
bit4 € [0 ... 15] for word operation
Operation: (Ws)<bitd> — Ws<bit4>
Status Affected: None
Encoding: ‘ 1010 ‘ 0010 ‘ bbbb ‘ 0B0O ‘ O0ppp | ssss
Description: Bit ‘bit4’ in register Ws is toggled (complemented). For the bit4 operand,
bit numbering begins with the Least Significant bit (bit 0) and advances to
the Most Significant bit (bit 7 for byte operations, bit 15 for word
operations). Register direct or indirect addressing may be used for Ws.
The ‘b’ bits select value bit4, the bit position to test.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the source/destination register.
The ‘p’ bits select the source Address mode.

Note 1. The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the source
register address must be word-aligned.
3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.
Words: 1
Cycles:
Example 1: BTG W2, #0x0 ; Toggle bit 0 in W2
Before After
Instruction Instruction
W2| F234 wW2| F235
SR| 0000 SR| 0000
Example 2: BTG [WO++], #0x0 ; Toggle bit 0 in [WO]
; Post-increment WO
Before After
Instruction Instruction
W0 | 2300 W0 | 2302
Data 2300| 5606 Data 2300| 5607
SR| 0000 SR| 0000

© 2005 Microchip Technology Inc.

Preliminary DS70157B-page 5-59

)
M
0
)
=
i=l
=
o
>
n

dsPIC30F/33F Programmer’s Reference Manual

BTSC

Bit Test f, Skip if Clear

Syntax: {label:} BTSC{.B}
Operands: fe [0 ... 8191] for byte operation
bit4 € [0 ... 7] for byte operation
bit4 € [0 ... 15] for word operation
Operation: Test (f)<bit4>, skip if clear
Status Affected: None
Encoding: | 1010 ‘ 1111
Description:
2:
3:
Words: 1
Cycles: 1(20r3)
Example 1: 002000 HERE: BTSC.B
002002 GOTO
002004
002006
002008 BYPASS:
00200A
Before
Instruction
PC 00 2000
Data 1200 264F
SR 0000

f,

#bitd

fe [0 ... 8190] (even only) for word operation

| bbb f

FEEE ‘

ffff

| FEfb

Bit ‘bit4’ in the file register is tested. If the tested bit is ‘0’, the next
instruction (fetched during the current instruction execution) is discarded
and on the next cycle, a NOP is executed instead. If the tested bit is ‘1’,
the next instruction is executed as normal. In either case, the contents of
the file register are not changed. For the bit4 operand, bit numbering
begins with the Least Significant bit (bit 0) and advances to the Most
Significant bit (bit 7 for byte operations, bit 15 for word operations).

The ‘b’ bits select value bit4, the bit position to test.
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.
When this instruction operates in Word mode, the file register
address must be word-aligned.
When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.

0x1201,
BYPASS

PC
Data 1200
SR

#2

7

7

skip the GOTO

After
Instruction

00 2002

264F

0000

; If bit 2 of 0x1201 is O,

DS70157B-page 5-60

Preliminary

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2: 002000 HERE: BTSC 0x804, #14 ; If bit 14 of 0x804 is O,
002002 GOTO BYPASS ; skip the GOTO
002004
002006
002008 BYPASS:
00200A

Before After
Instruction Instruction
PC 00 2000 PC 00 2004
Data 0804 2647 Data 0804 2647
SR 0000 SR 0000

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-61

dsPIC30F/33F Programmer’s Reference Manual

BTSC

Bit Test Ws, Skip if Clear

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1:

{label:} BTSC Ws, #bit4
[Ws],
[Ws++],
[VVS“],
[++Ws],
[--Ws],
Ws e [WO ... W15]
bit4 € [0 ... 15]
Test (Ws)<bit4>, skip if clear
None
| 1010 | 0111 | bbbb ‘ 0000 | Oppp ‘ ssss |

Bit ‘bit4’ in Ws is tested. If the tested bit is ‘07, the next instruction (fetched
during the current instruction execution) is discarded and on the next
cycle, a NOP is executed instead. If the tested bit is ‘1’, the next instruction
is executed as normal. In either case, the contents of Ws are not
changed. For the bit4 operand, bit numbering begins with the Least
Significant bit (bit 0) and advances to the Most Significant bit (bit 15) of
the word. Either register direct or indirect addressing may be used for Ws.

The ‘b’ bits select value bit4, the bit position to test.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the source register.

Note:
1

This instruction operates in Word mode only.

1 (2 or 3 if the next instruction is skipped)

002000 HERE: BTSC WO, #0x0 ; If bit 0 of WO is O,
002002 GOTO BYPASS ; skip the GOTO
002004
002006
002008 BYPASS:
00200A
Before After

Instruction Instruction
PC 00 2000 PC 00 2002
WO 264F WO 264F
SR 0000 SR 0000

DS70157B-page 5-62

Preliminary

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2:

Example 3:

002000 HERE:
002002

002004

002006

002008 BYPASS:
00200A

Before
Instruction

PC 00 2000

W6 264F

SR 0000

003400 HERE:
003402

003404

003406

003408 BYPASS:
00340A

Before
Instruction

PC 00 3400

W6 1800

Data 1800 1000

SR 0000

BTSC
GOTO

BTSC
GOTO

; If bit 15 of We is O,

; skip the GOTO

#0xC ; If bit 12 of [W6]
; skip the GOTO
; Post-increment W6

W6, #OxF
BYPASS
After
Instruction
PC 00 2004
W6 264F
SR 0000
[We++1,
BYPASS
After
Instruction
PC 00 3402
W6 1802
Data 1800 1000
SR 0000

is 0,

© 2005 Microchip Technology Inc.

Preliminary

DS70157B-page 5-63

)
M
0
)
=
i=l
=
o
>
n

dsPIC30F/33F Programmer’s Reference Manual

BTSS Bit Test f, Skip if Set

Syntax: {label:} BTSS{.B} f, #bit4

Operands: fe [0 ... 8191] for byte operation
fe [0...8190] (even only) for word operation
bit4 € [0 ... 7] for byte operation
bit4 € [0 ... 15] for word operation

Operation: Test (f)<bit4>, skip if set

Status Affected: None

Encoding: | 1010 | 1110 | bbbt £EFf | fEff | f£ffb
Description: Bit ‘bit4’ in the file register ‘' is tested. If the tested bit is ‘1, the next

instruction (fetched during the current instruction execution) is discarded
and on the next cycle, a NOP is executed instead. If the tested bit is ‘0’, the
next instruction is executed as normal. In either case, the contents of the
file register are not changed. For the bit4 operand, bit numbering begins
with the Least Significant bit (bit 0) and advances to the Most Significant
bit (bit 7 for byte operation, bit 15 for word operation).

The ‘b’ bits select value bit4, the bit position to test.
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the file register
address must be word-aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.

Words: 1
Cycles: 1 (2 or 3 if the next instruction is skipped)
Example 1: 007100 HERE: BTSS.B 0x1401, #0x1; If bit 1 of 0x1401 is 1,
007102 CLR WREG ; don’t clear WREG
007104
Before After
Instruction Instruction
PC 00 7100 PC 00 7104
Data 1400 0280 Data 1400 0280
SR 0000 SR 0000
Example 2: 007100 HERE: BTSS 0x890, #0x9 ; If bit 9 of 0x890 is 1,
007102 GOTO BYPASS ; skip the GOTO
007104

007106 BYPASS:

Before After
Instruction Instruction
PC 00 7100 PC 00 7102
Data 0890 00OFE Data 0890 00FE
SR 0000 SR 0000

DS70157B-page 5-64 Prelimin ary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

BTSS Bit Test Ws, Skip if Set

Syntax: {label:} BTSS Ws, #bit4
[Ws],
[Ws++],
[VVS"]!
[++Ws],
[--Ws],
Operands: Ws e [WO ... W15]
bit4 € [0 ... 15]
Operation: Test (Ws)<bit4>, skip if set.
Status Affected: None
Encoding: | 1010 | 0110 | bbbb ‘ 0000 | Oppp ‘ ssss |
Description: Bit ‘bit4’ in Ws is tested. If the tested bit is ‘1’, the next instruction (fetched

during the current instruction execution) is discarded and on the next
cycle, a NOP is executed instead. If the tested bit is ‘0, the next instruction
is executed as normal. In either case, the contents of Ws are not
changed. For the bit4 operand, bit numbering begins with the Least
Significant bit (bit 0) and advances to the Most Significant bit (bit 15) of
the word. Either register direct or indirect addressing may be used for Ws.

The ‘b’ bits select the value bit4, the bit position to test.
The ‘s’ bits select the source register.
The ‘p’ bits select the source Address mode.

Note: This instruction operates in Word mode only.

Words: 1
Cycles: 1 (2 or 3 if the next instruction is skipped)
Example 1: 002000 HERE: BTSS WO, #0x0 ; If bit 0 of Wo is 1,
002002 GOTO BYPASS ; skip the GOTO
002004
002006
002008 BYPASS:
00200A
Before After
Instruction Instruction
PC 00 2000 PC 00 2004
WO 264F WO 264F
SR 0000 SR 0000

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-65

dsPIC30F/33F Programmer’s Reference Manual

Example 2:

002000 HERE:
002002
002004
002006

002008 BYPASS:

00200A

Before
Instruction

PC
W6
SR

00 2000

264F

0000

Example 3:

003400 HERE:
003402
003404
003406

003408 BYPASS:

00340A

PC
W6
Data 1800
SR

Before
Instruction

00 3400

1800

1000

0000

BTSS
GOTO

BTSS
GOTO

is 1,

W6, #OxF ; If bit 15 of W6 is 1,
BYPASS ; skip the GOTO
After
Instruction
PC 00 2002
W6 264F
SR 0000
[We++], 0xC ; If bit 12 of [W6]
BYPASS ; skip the GOTO
; Post-increment W6
After
Instruction
PC 00 3404
W6 1802
Data 1800 1000
SR 0000

DS70157B-page 5-66

Preliminary

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

BTST Bit Test f

Syntax: {label:} BTST{B} f, #bit4

Operands: fe [0 ... 8191] for byte operation
fe [0 ... 8190] (even only) for word operation
bit4 € [0 ... 7] for byte operation
bit4 € [0 ... 15] for word operation

Operation: (H<hitd> - Z

Status Affected: z

Encoding: | 1010 | 1011 | bbbt FEEF £ | fffb |
Description: Bit ‘bit4’ in file register ‘f' is tested and the complement of the tested bit is

stored to the Z flag in the STATUS register. The contents of the file regis-
ter are not changed. For the bit4 operand, bit numbering begins with the
Least Significant bit (bit 0) and advances to the Most Significant bit (bit 7
for byte operation, bit 15 for word operation).

The ‘b’ bits select value bit4, the bit position to be tested.
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2. When this instruction operates in Word mode, the file register
address must be word-aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.

Words:
Cycles:
Examgle 1: BTST.B 0x1201, #0x3 ; Set Z = complement of
; bit 3 in 0x1201
Before After
Instruction Instruction
Data 1200 F7FF Data 1200| F7FF
SR 0000 SR| 0002 |(Z=1)
Example 2: BTST 0x1302, #0x7 ; Set Z = complement of

; bit 7 in 0x1302

Before After
Instruction Instruction
Data 1302| F7FF Data 1302 | F7FF
SR 0002 (Zz=1) SR| 0000

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-67

dsPIC30F/33F Programmer’s Reference Manual

BTST Bit Test in Ws

Syntax: {label:} BTST.C Ws, #bit4
BTST.Z [Ws],
[Ws++],
[Ws-],
[++Ws],
[--Ws],
Operands: Ws e [WO ... W15]
bit4 € [0 ... 15]
Operation: For “.C” operation:

(Ws)<bitd> —» C
For “.Z” operation (default):

(Ws)<hitd> — Z
Status Affected: ZorC

Encoding: ‘ 1010 ‘ 0011 bbbb Z000 O0ppp ssss

Description: Bit ‘bit4’ in register Ws is tested. If the “. z” option of the instruction is
specified, the complement of the tested bit is stored to the Zero flag in the
STATUS register. If the “. C” option of the instruction is specified, the value
of the tested bit is stored to the Carry flag in the STATUS register. In either
case, the contents of Ws are not changed.

For the bit4 operand, bit numbering begins with the Least Significant bit
(bit 0) and advances to the Most Significant bit (bit 15) of the word. Either
register direct or indirect addressing may be used for Ws.

The ‘b’ bits select value bit4, the bit position to test.

The ‘Z’ bit selects the C or Z flag as destination.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note: This instruction only operates in Word mode. If no extension is
provided, the “. z” operation is assumed.

Words: 1
Cycles:
Example 1: BTST.C [WO++], #0x3 ; Set C = bit 3 in [WO]
; Post-increment WO
Before After
Instruction Instruction
WO 1200 WO | 1202
Data 1200| FFF7 Data 1200| FFF7
SR 0001 |(C=1) SR| 0000
Example 2: BTST.Z WO, #0x7 ; Set Z = complement of bit 7 in WO
Before After
Instruction Instruction
WO F234 WO | F234
SR 0000 SR| 0002|(Zz=1)

DS70157B-page 5-68 Prelimin ary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

BTST Bit Test in Ws

Syntax: {label:} BTST.C Ws, Wb
BTST.Z [Ws],
[Ws++],
[Ws--],
[++Ws],
[--Ws],
Operands: Ws € [WO ... W15]
Wb e [WO ... W15]
Operation: For “.C” operation:

(Ws)<(Wh)> - C
For “.Z” operation (default):
(Ws)<(Wb)> — Z
Status Affected: ZorC

Encoding: ‘ 1010 ‘ 0101 ZWwWwW w000 Oppp ssss

Description: The (WD) bit in register Ws is tested. If the “. C” option of the instruction is
specified, the value of the tested bit is stored to the Carry flag in the
STATUS register. If the “. z” option of the instruction is specified, the com-
plement of the tested bit is stored to the Zero flag in the STATUS register.
In either case, the contents of Ws are not changed.

Only the four Least Significant bits of Wh are used to determine the bit
number. Bit numbering begins with the Least Significant bit (bit 0) and
advances to the Most Significant bit (bit 15) of the working register.
Register direct or indirect addressing may be used for Ws.

The ‘Z' bit selects the C or Z flag as destination.

The ‘W’ bits select the address of the bit select register.
The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note: This instruction only operates in Word mode. If no extension is
provided, the “. z" operation is assumed.

Words: 1
Cycles:
Example 1: BTST.C W2, W3 ; Set C = bit W3 of W2
Before After
Instruction Instruction
W2 F234 W2| F234
W3 2368 W3| 2368

SR| 0001](C=1) SR| 0000

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-69

dsPIC30F/33F Programmer’s Reference Manual

Instruction

Example 2: BTST.Z [WO++], W1
Before
Instruction
WO 1200 WO
W1| CCCO w1
Data 1200 6243 Data 1200
SR| 0002|(Z=1) SR

; Set Z
; bit W1 in [wWO],
; Post-increment WO

After

1202

CCcCo

6243

0000

complement of

DS70157B-page 5-70

Preliminary

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

BTSTS Bit Test/Set f

Syntax: {label:} BTSTS{.B} f, #bit4

Operands: fe [0 ... 8191] for byte operation
fe [0 ... 8190] (even only) for word operation
bit4 € [0 ... 7] for byte operation
bit4 € [0 ... 15] for word operation

Operation: (H<bita> - Z
1 — (f<bit4>
Status Affected: z
Encoding: | 1010 | 1100 | bbbf | frff FEEE | fffp |
Description: Bit ‘bit4’ in file reqgister ‘f’ is tested and the complement of the tested bit is

stored to the Zero flag in the STATUS register. The tested bit is then set
to ‘1’ in the file register. For the bit4 operand, bit numbering begins with
the Least Significant bit (bit 0) and advances to the Most Significant bit
(bit 7 for byte operations, bit 15 for word operations).

The ‘b’ bits select value bit4, the bit position to test/set.
The ‘f’ bits select the address of the file register.

Note 1. The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the file register
address must be word-aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.

Words:
Cycles:
Example 1: BTSTS.B 0x1201, #0x3 ; Set Z = complement of bit 3 in 0x1201,
; then set bit 3 of 0x1201 =1
Before After
Instruction Instruction
Data 1200 F7FF Data 1200| FFFF
SR 0000 SR| 0002|(Z=1)
Example 2: BTSTS 0x808, #15 ; Set Z = complement of bit 15 in 0x808,

; then set bit 15 of 0x808 = 1

Before After
Instruction Instruction
RAM300| 8050 RAM300| 8050
SR| 0002|(Z=1) SR| 0000

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-71

dsPIC30F/33F Programmer’s Reference Manual

BTSTS

Bit Test/Set in Ws

Syntax: {label:} BTSTS.C Ws, #bit4
BTSTS.Z [Ws],
[Ws++],
[VVS“],
[++Ws],
[--Ws],
Operands: Ws e [WO ... W15]
bit4 € [0 ... 15]
Operation: For “.C” operation:
(Ws)<bitd> —» C
1 — Ws<bit4>
For “.Z” operation (default):
(Ws)<hit4d> — Z
1 — Ws<bit4>
Status Affected: ZorC
Encoding: | 1010 | 0100 bbbb Z000 Oppp ssss
Description: Bit ‘bit4’ in register Ws is tested. If the “. z” option of the instruction is
specified, the complement of the tested bit is stored to the Zero flag in the
STATUS register. If the “. C” option of the instruction is specified, the value
of the tested bit is stored to the Carry flag in the STATUS register. In both
cases, the tested bit in Ws is setto ‘1’.
The ‘b’ bits select the value bit4, the bit position to test/set.
The ‘Z’ bit selects the C or Z flag as destination.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the source register.
Note: This instruction only operates in Word mode. If no extension is
provided, the “. z” operation is assumed.
Words: 1
Cycles:
Example 1: BTSTS.C [WO++], #0x3 ; Set C = bit 3 in [WO]
; Set bit 3 in [Wo0] = 1
; Post-increment WO
Before After
Instruction Instruction
W0o| 1200 Wo| 1202
Data 1200| FFF7 Data 1200| FFFF
SR| 0001|(C=1) SR| 0000
Example 2: BTSTS.Z WO, #0x7 ; Set Z = complement of bit 7
; in W0, and set bit 7 in WO = 1
Before After
Instruction Instruction
W0| F234 W0 | F2BC
SR| 0000 SR| 0002 |(Z=1)
DS70157B-page 5-72 Prelimin ary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

CALL Call Subroutine

Syntax: {label:} CALL Expr
Operands: Expr may be a label or expression (but not a literal).

Expr is resolved by the linker to a lit23, where lit23 € [0 ... 8388606].
Operation: (PC)+4 —» PC

(PC<15:0>) — (TOS)
(W15) + 2 - W15
(PC<23:16>) — (TOS)
(W15) + 2 - W15

lit23 — PC
NOP — Instruction Register
Status Affected: None
Encoding:
1st word 0000 0010 nnnn nnnn nnnn nnno
2nd word 0000 0000 0000 0000 Onnn nnnn
Description: Direct subroutine call over the entire 4-Mbyte instruction program
memory range. Before the CALL is made, the 24-bit return address
(PC + 4) is PUSHed onto the stack. After the return address is
stacked, the 23-bit value ‘lit23’ is loaded into the PC.
The ‘n’ bits form the target address.
Note: The linker will resolve the specified expression into the lit23 to
be used.
Words: 2
Cycles: 2
Example 1: 026000 CALL _FIR ; Call FIR subroutine
026004 MOV Wo, Wil
O26é44 _FIR: MOV #0x400, W2 ; _FIR subroutine start
026846 -
Before After
Instruction Instruction
PC 02 6000 PC 02 6844
W15 A268 w15 A26C
Data A268 FFFF Data A268 6004
Data A26A FFFF Data A26A 0002
SR 0000 SR 0000
Example 2: 072000 CALL _Gé66 ; call routine _G66
072004 MOV Wo, Wi
O77A28 _G66: INC W6, [W7++] ; routine start
077A2A
077A2C
Before After
Instruction Instruction
PC 07 2000 PC 07 7A28 O
W15 9004 W15 9008 8
Data 9004 FFFF Data 9004 2004 e
Data 9006 FFFF Data 9006 0007 =]
SR 0000 SR 0000 g'
)

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-73

dsPIC30F/33F Programmer’s Reference Manual

CALL

Call Indirect Subroutine

Syntax: {label:} CALL Wn
Operands: Wn e [WO ... W15]
Operation: (PC)+2->PC
(PC<15:0>) —» TOS
(W15) + 2 - W15
(PC<23:16>) —» TOS
(W15) +2 - W15
0 — PC<22:16>
(Wn<15:1>) — PC<15:1>
NOP — Instruction Register
Status Affected: None
Encoding: | 0000 | 0001 0000 0000 | 0000 ‘ ssss
Description: Indirect subroutine call over the first 32K instructions of program memory.
Before the CALL is made, the 24-bit return address (PC + 2) is PUSHed
onto the stack. After the return address is stacked, Wn<15:1> is loaded
into PC<15:1> and PC<22:16> is cleared. Since PC<0> is always ‘0’,
Wn<0> is ignored.
The ‘s’ bits select the source register.
Words: 1
Cycles: 2
Example 1: 001002 CALL WO ; Call BOOT subroutine indirectly
001004 ; using WO
001600 _BOOT: MOV #0x400, W2 ; _BOOT starts here
001602 MOV #0x300, W6
Before After
Instruction Instruction
PC 00 1002 PC 00 1600
WO 1600 WO 1600
W15 6F00 W15 6F04
Data 6F00 FFFF Data 6F00 1004
Data 6F02 FFFF Data 6F02 0000
SR 0000 SR 0000
Example 2: 004200 CALL W7 ; Call TEST subroutine indirectly
004202 - ; using W7
005500 _TEST: INC W1, W2 ; _TEST starts here
005502 DEC W1, W3 ;
Before After
Instruction Instruction
PC 00 4200 PC 00 5500
w7 5500 w7 5500
W15 6F00 W15 6F04
Data 6F00 FFFF Data 6F00 4202
Data 6F02 FFFF Data 6F02 0000
SR 0000 SR 0000

DS70157B-page 5-74

Prelimi nary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

CL R Clear f or WREG

Syntax: {label:} CLR{.B} f
WREG
Operands: fe[0..8191]
Operation: 0 — destination designated by D
Status Affected: None
Encoding: | 1110 | 1111 | ompf | eeee | feff | EEEE |
Description: Clear the contents of a file register or the default working register WREG.

If WREG is specified, the WREG is cleared. Otherwise, the specified file
register ‘f’ is cleared.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination (‘0" for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.

Words: 1
Cycles:
Example 1: CLR.B RAM200 ; Clear RAM200 (Byte mode)
Before After
Instruction Instruction
RAM200| 8009 RAM200| 8000
SR| 0000 SR | 0000
Example 2: CLR WREG ; Clear WREG (Word mode)
Before After
Instruction Instruction
WREG| 0600 WREG| 0000
SR| 0000 SR| 0000

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-75

dsPIC30F/33F Programmer’s Reference Manual

CL R Clear wd

Syntax: {label:} CLR{.B} wd
[wd]
[Wd++]
(Wd--]
[++Wd]
[--Wd]
Operands: Wd e [WO ... W15]
Operation: 0—->Wd
Status Affected: None
Encoding: | 1110 ‘ 1011 | 0Bgg | gddd ‘ dooo | 0000 |
Description: Clear the contents of register Wd. Either register direct or indirect

addressing may be used for Wd.

The ‘B’ bit select byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the destination register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles:
Example 1: CLR.B W2 ; Clear W2 (Byte mode)
Before After
Instruction Instruction
W2| 3333 W2| 3300
SR| 0000 SR| 0000
Example 2: CLR [WO++] ; Clear [WO]
; Post-increment WO
Before After
Instruction Instruction
WO | 2300 WO0| 2302
Data 2300| 5607 Data 2300 0000
SR| 0000 SR| 0000

DS70157B-page 5-76 Prelimin ary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

CLR

Clear Accumulator, Prefetch Operands

Syntax: {label:} CLR Acc {,[Wx],Wxd} {[Wy],wyd} {,AWB}
{.IWx] + = kx,Wxd} {,[Wy] + = ky,Wyd}
{.IWx] — = kx,Wxd} {,[Wy] - = ky,Wyd}
{,IW9 + W12],wxd} {,[W1l + W12],Wyd}
Operands: Acc e [AB]
Wx e [W8, W9J; kx € [-6, -4, -2, 2, 4, 6]; Wxd € [W4 ... W7]
Wy e [W10, W11]; ky € [-6, -4, -2, 2, 4, 6]; Wyd € [W4 ... W7]
AWB e [W13, [W13] + = 2]
Operation: 0 — Acc(A or B)
(JWx]) = Wxd; (Wx) +/— kx — WX
(IWy]) = Wyd; (Wy) +/—ky — Wy
(Acc(B or A)) rounded — AWB
Status Affected: OA, OB, SA, SB
Encoding: 1100 | 0011 | aoxx yyii 1133 | jjaa |
Description: Clear all 40 bhits of the specified accumulator, optionally prefetch
operands in preparation for a MAC type instruction and optionally store
the non-specified accumulator results. This instruction clears the
respective overflow and saturate flags (either OA, SA or OB, SB).
Operands Wx, Wxd, Wy and Wyd specify optional prefetch operations
which support indirect and register offset addressing, as described in
Section 4.14.1 “MAC Prefetches”. Operand AWB specifies the
optional register direct or indirect store of the convergently rounded
contents of the “other” accumulator, as described in Section 4.14.4
“MAC Write Back”.
The ‘A’ bit selects the other accumulator used for write back.
The ‘X’ bits select the prefetch Wxd destination.
The 'y’ bits select the prefetch Wyd destination.
The ‘I’ bits select the Wx prefetch operation.
The ' bits select the Wy prefetch operation.
The ‘a’ bits select the accumulator Write Back destination.
Words: 1
Cycles: 1
Example 1: CLR A, [W8]l+=2, W4, W13 ; Clear ACCA
; Load W4 with [W8], post-inc W8
; Store ACCB to W13
Before After
Instruction Instruction
w4 F001 w4 1221
w8 2000 w8 2002
w13 C623 W13 5420
ACCA| 000067 2345 ACCA| 00 0000 0000
ACCB| 005420 3BDD ACCB| 005420 3BDD
Data 2000 1221 Data 2000 1221
SR 0000 SR 0000

© 2005 Microchip Technology Inc.

Preliminary

DS70157B-page 5-77

)
M
0
)
=
i=l
=
o
>
n

dsPIC30F/33F Programmer’s Reference Manual

Example 2. CLR

W6

W7

w8

W10

W13
ACCA
ACCB
Data 2000
Data 3000
Data 4000
SR

B, [W8]+=2, W6, [W10]+=2,
Before
Instruction
FOO1 W6
C783 w7
2000 w8
3000 W10
4000 W13
00 0067 2345 ACCA
00 5420 ABDD ACCB
1221 Data 2000
FF80 Data 3000
FFC3 Data 4000
0000 SR

W7,

[W13]+=2 ; Clear ACCB
; Load W6 with
; Load W7 with [W10]
; Save ACCA to [W13]
; Post-inc W8,W10,W13

[W8]

After
Instruction

1221

FF80

2002

3002

4002

00 0067 2345

00 0000 0000

1221

FF80

0067

0000

DS70157B-page 5-78

Preliminary

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

CL RWDT Clear Watchdog Timer

Syntax: {label:} CLRWDT
Operands: None
Operation: 0 — WDT count register

0 — WDT prescaler A count
0 — WDT prescaler B count

Status Affected: None
Encoding: 1111 1110 0110 0000 0000 | 0000 |
Description: Clear the contents of the Watchdog Timer count register and the

prescaler count registers. The Watchdog Prescaler A and Prescaler B
settings, set by configuration fuses in the FWDT, are not changed.

Words: 1
Cycles: 1
Example 1: CLRWDT ; Clear Watchdog Timer
Before After
Instruction Instruction

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-79

dsPIC30F/33F Programmer’s Reference Manual

COM Complement f

Syntax: {label:} COM({.B} f {{WREG}

Operands: fe[0...8191]

Operation: @ — destination designated by D

Status Affected: N, Z

Encoding: | 1110 | 1110 | 1BDE FEFE FEEF FEFE
Description: Compute the 1's complement of the contents of the file register and place

the result in the destination register. The optional WREG operand
determines the destination register. If WREG is specified, the result is
stored in WREG. If WREG is not specified, the result is stored in the file
register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).

The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2. The WREG is set to working register WO.

Words:
Cycles: 1
Example 1: COM.b RAM200 ; COM RAM200 (Byte mode)
Before After
Instruction Instruction
RAM200| 80FF RAM200| 8000
SR| 0000 SR| 0002 |(2)

Example 2: CcoM RAM400, WREG ; COM RAM400 and store to WREG

; (Word mode)

Before After
Instruction Instruction
WREG| 1211 WREG| F7DC
RAM400| 0823 RAM400| 0823
SR| 0000 SR| 0008|(N=1)

DS70157B-page 5-80 Prelimin ary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

COM Complement Ws

Syntax: {label:} COM{.B} Ws, wd
[Ws], [wd]
[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[--Ws], [--Wd]
Operands: Ws e [WO ... W15]
Wd e [WO ... W15]
Operation: (Ws) - wd
Status Affected: N, Z
Encoding: | 1110 ‘ 1010 ‘ 1Baqg | gddd ‘ dppp ‘ ssss |
Description: Compute the 1's complement of the contents of the source register Ws

and place the result in the destination register Wd. Either register direct or
indirect addressing may be used for both Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words:
Cycles:
Examplel: COM.B [WO++1, [Wl++] ; COM [W0] and store to [W1l] (Byte mode)
; Post-increment WO, W1
Before After
Instruction Instruction
WO 2301 WO 2302
W1 2400 w1 2401
Data 2300 5607 Data 2300 5607
Data 2400 ABCD Data 2400 ABA9
SR 0000 SR 0008 | (N=1)
Example 2: coM WO, [Wl++] ; COM WO and store to [W1] (Word mode)
; Post-increment W1
Before After
Instruction Instruction
WO D004 WO D004 o
w1 1000 W1 1002 8
Data 1000| ABA9 Data 1000| 2FFB Q
SR| 0000 SR| 0000 o
=
>
wn

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-81

dsPIC30F/33F Programmer’s Reference Manual

CP

Compare f with WREG, Set Status Flags

Syntax: {label:} CP{.B} f

Operands: fe [0..8191]

Operation: (f) — (WREG)

Status Affected: DC,N,0V, Z,C

Encoding: | 1110 | o011 | omof | feer | fffE | fref |

Description: Compute (f) — (WREG) and update the STATUS register. This instruction
is equivalent to the SUBWF instruction, but the result of the subtraction is
not stored.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2. The WREG is set to working register WO.
Words:
Cycles:
Example 1: CP.B RAM400 ; Compare RAM400 with WREG (Byte mode)
Before After
Instruction Instruction
WREG| 8823 WREG| 8823
RAM400| 0823 RAM400| 0823
SR| 0000 SR| 0002|(Z=1)
Example 2: CP 0x1200 ; Compare (0x1200) with WREG (Word mode)
Before After
Instruction Instruction
WREG| 2377 WREG| 2377
Data 1200| 2277 Data 1200 | 2277
SR| 0000 SR| 0008 |(N=1)

DS70157B-page 5-82

Prelimi nary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

CP Compare Wb with lit5, Set Status Flags
Syntax: {label:} CP{.B} Wh, #lit5
Operands: Wb € [WO ... W15]
lit5 € [0... 31]
Operation: (Wb) — lits
Status Affected: DC,N, 0V, Z, C
Encoding: | 1110 | 0001 ‘ Owww wB00 011k kkkk
Description: Compute (Wb) — lit5, and update the STATUS register. This instruction is

equivalent to the SUB instruction, but the result of the subtraction is not
stored. Register direct addressing must be used for Wh.

The ‘w’ bits select the address of the Wb base register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘K’ bits provide the literal operand, a five-bit integer number.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words:
Cycles: 1
Example 1: CP.B W4, #0x12 ; Compare W4 with 0x12 (Byte mode)
Before After
Instruction Instruction
w4 | 7711 W4 | 7711
SR| 0000 SR| 0008|(N=1)
Example 2: CcP W4, #0x12 ; Compare W4 with 0x12 (Word mode)
Before After
Instruction Instruction
W4 7713 W4 7713
SR 0000 SR 0000

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-83

dsPIC30F/33F Programmer’s Reference Manual

CP Compare Wh with Ws, Set Status Flags
Syntax: {label’} CP{.B} Wh, Ws
[Ws]
[Ws++]
[Ws-]
[++Ws]
[--Ws]
Operands: Wb e [WO ... W15]
Ws e [WO ... W15]
Operation: (Wb) — (Ws)
Status Affected: DC, N, 0V, Z, C
Encoding: ‘ 1110 ‘ 0001 | Owww wB00 Oppp ssss
Description: Compute (Wb) — (Ws), and update the STATUS register. This instruction is

equivalent to the SUB instruction, but the result of the subtraction is not
stored. Register direct addressing must be used for Wb. Register direct or
indirect addressing may be used for Ws.

The ‘W’ bits select the address of the Wb source register.

The ‘B’ hit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the Ws source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words:
Cycles:
Example 1: CP.B WO, [Wl++] ; Compare [W1l] with WO (Byte mode)
; Post-increment W1
Before After
Instruction Instruction
WO0| ABA9 WO| ABA9
w1 2000 W1l 2001
Data 2000| D004 Data 2000| D004
SR 0000 SR 0008 | (N =1)
Example 2: CcP W5, W6 ; Compare W6 with W5 (Word mode)
Before After
Instruction Instruction
W5 2334 W5 2334
W6 8001 W6 8001
SR 0000 SR| 000C|(N,0OV=1)

DS70157B-page 5-84 Prelimin ary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

CPO Compare f with 0x0, Set Status Flags

Syntax: {label’} CPO{.B} f

Operands: fe [0...8191]

Operation: (H — Ox0

Status Affected: DC,N,QV, Z, C

Encoding: | 1110 | ooto | omor | ffee | ffef | feee |
Description: Compute (f) — 0x0 and update the STATUS register. The result of the

subtraction is not stored.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘f’ bits select the address of the file register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words:
Cycles:
Example 1: CP0.B RAM100 ; Compare RAM100 with 0x0 (Byte mode)
Before After
Instruction Instruction
RAM100| 44C3 RAM100| 44C3
SR 0000 SR 0008 | (N=1)
Example 2: CPO 0x1FFE ; Compare (0x1FFE) with 0x0 (Word mode)
Before After
Instruction Instruction
Data 1FFE 0001 Data 1FFE 0001
SR 0000 SR 0000

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-85

dsPIC30F/33F Programmer’s Reference Manual

CPO

Compare Ws with 0x0, Set Status Flags

Syntax:
Operands:
Operation:
Status Affected:
Encoding:
Description:
Words:
Cycles:
Example 1: CPO
w4
Data 1000
SR
Example 2: CPO
w5
Data 23FE
SR

{label:} CPO{.B} Ws
[Ws]
[Ws++]
[Ws--]
[++Ws]
[--Ws]
Ws e [WO ... W15]
(Ws) — 0x0000
DC,N,0V, Z,C
| 1110 | 0000 ‘ 0000 ‘ 0BOO | Oppp ‘ ssss |

Compute (Ws) — 0x0000 and update the STATUS register. The result of
the subtraction is not stored. Register direct or indirect addressing may be

used for Ws.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the Ws source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

1
B [W4--] ; Compare [W4] with 0 (Byte mode)
; Post-decrement W4
Before After
Instruction Instruction
1001 W4 | 1000
0034 Data 1000| 0034
0000 SR| 0002 |(Z=1)
[--W5] ; Compare [--W5] with 0 (Word mode)
Before After
Instruction Instruction
2400 W5| 23FE
9000 Data 23FE| 9000
0000 SR| 0008 |(N=1)

DS70157B-page 5-86

Preliminary

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

CPB Compare f with WREG using Borrow, Set Status Flags

Syntax: {label:} CPB{.B} f

Operands: fe [0..8191]

Operation: () — (WREG) — (C)

Status Affected: DC,N, 0V, zZ,C

Encoding: | 1110 | o011 | amor | frrf FEEF FFEE
Description: Compute (f) — (WREG) — (C), and update the STATUS register. This

instruction is equivalent to the SUBB instruction, but the result of the
subtraction is not stored.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The 'f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.
3: The Zflagis “sticky” for ADDC, CPB, SUBB and SUBBR. These
instructions can only clear Z.

Words:
Cycles:
Example 1: CPB.B RAM400 ; Compare RAM400 with WREG using C (Byte mode)
Before After
Instruction Instruction
WREG 8823 WREG 8823
RAM400 0823 RAM400 0823
SR 0000 SR 0008 | (N=1)
Example 2: CPB 0x1200 ; Compare (0x1200) with WREG using C (Word mode)
Before After
Instruction Instruction
WREG 2377 WREG 2377
Data 1200 2377 Data 1200 2377
SR 0001 |(C=1) SR 0001 |(C=1)

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-87

dsPIC30F/33F Programmer’s Reference Manual

CPB

Compare Wb with lit5 using Borrow, Set Status Flags

Syntax: {label:} CPB{.B} Wh, #lit5
Operands: Wb € [WO ... W15]
lits e [0 ... 31]
Operation: (Wb) — Iit5 — (C)
Status Affected: DC,N, 0V, zZ,C
Encoding: ‘ 1110 | 0001 ‘ lwww wB00 011k kkkk
Description: Compute (Wb) — lit5 — (E), and update the STATUS register. This instruc-
tion is equivalent to the SUBB instruction, but the result of the subtraction is
not stored. Register direct addressing must be used for Wh.
The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘K’ bits provide the literal operand, a five bit integer number.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2. The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR. These
instructions can only clear Z.
Words: 1
Cycles:
Example 1: CPB.B W4, #0x12 ; Compare W4 with 0x12 using C (Byte mode)
Before After
Instruction Instruction
w4 7711 w4 7711
SR| 0001 |(C=1) SR| 0008 |(N=1)
Example 2: CPB.B W4, #0x12 ; Compare W4 with 0x12 using C (Byte mode)
Before After
Instruction Instruction
w4 | 7711 w4 | 7711
SR| 0000 SR| 0008|(N=1)
Example 3: CPB W12, #Ox1F ; Compare W12 with Ox1F using C (Word mode)
Before After
Instruction Instruction
W12| 0020 W12| 0020
SR| 0002|(Z=1) SR| 0003|(Z,C=1)
Example 4: CPB W12, #Ox1F ; Compare W12 with 0x1F using C (Word mode)
Before After
Instruction Instruction
Ww12| 0020 w12| 0020
SR| 0003|(Z,C=1) SR| 0001|(C=1)

DS70157B-page 5-88

Preliminary

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

CPB Compare Ws with Wb using Borrow, Set Status Flags
Syntax: {label:} CPB{.B} Wh, Ws
[Ws]
[Ws++]
[Ws-]
[++Ws]
[--Ws]
Operands: Wb € [WO ... W15]
Ws e [WO ... W15]
Operation: (Wb) — (Ws) — (C)
Status Affected: DC, N, OV, Z,C
Encoding: ‘ 1110 ‘ 0001 ‘ lwww ‘ wB0O0 Oppp ssss
Description: Compute (Wb) — (Ws) — (6), and update the STATUS register. This instruc-

tion is equivalent to the SUBB instruction, but the result of the subtraction is
not stored. Register direct addressing must be used for Wh. Register direct
or indirect addressing may be used for Ws.

The ‘w’ bits select the address of the Wb source register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the Ws source register.

Note 1. The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The Z flag is “sticky” for ADDC, CPB, SUBB and SUBBR. These
instructions can only clear Z.

Words:
Cycles:

Examgle 1: CPB.B WO, [Wl++] ; Compare [W1l] with WO using C (Byte mode)
; Post-increment W1

Before After
Instruction Instruction
WO0| ABA9 WO | ABA9
w1 1000 w1 1001
Data 1000| DOA9 Data 1000| DOA9
SR 0002 ({(Zz=1) SR 0008 | (N =1)

Example 2: CPB.B WO, [Wl++] ; Compare [W1l] with WO using T (Byte mode)
; Post-increment W1

Before After
Instruction Instruction

WO | ABA9 WO | ABA9 g

W1 1000 W1 1001 g

Data 1000| DOA9 Data 1000| DOA9 =,
SR| 0001|(C=1) SR| 0001|(C=1) =4

o

>

7

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-89

dsPIC30F/33F Programmer’s Reference Manual

Example 3: CPB W4, W5 ; Compare W5 with W4 using C (Word mode)
Before After
Instruction Instruction
W4 | 4000 W4 | 4000
W5 3000 W5| 3000
SR 0001 |(C=1) SR 0001|(C=1)
DS70157B-page 5-90 Prelimin ary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

CPSEQ

Compare Wb with Wn, Skip if Equal (Wb = Wn)

Syntax: {label:} CPSEQ{.B} Wh, Wn
Operands: Wb e [WO ... W15]
Wn e [WO ... W15]
Operation: (Wb) — (Wn)
Skip if (Wb) = (Wn)
Status Affected: None
Encoding: | 1110 ‘ 0111 ‘ 1www wB00 | 0000 ‘ ssss ‘
Description: Compare the contents of Wb with the contents of Wn by performing the
subtraction (Wb) — (Wn), but do not store the result. If (Wb) = (Wn), the
next instruction (fetched during the current instruction execution) is
discarded and on the next cycle, a NOP is executed instead. If
(Wb) # (Wn), the next instruction is executed as normal.
The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Ws source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1 (2 or 3 if skip taken)
Example 1: 002000 HERE: CPSEQ.B WO, W1 ; If WO = W1 (Byte mode),
002002 GOTO BYPASS ; skip the GOTO
002004
002006 -
002008 BYPASS:.
00200A
Before After
Instruction Instruction
PC 00 2000 PC 00 2002
w0 1001 w0 1001
w1 1000 w1 1000
SR 0000 SR 0000
Example 2: 018000 HERE: CPSEQ W4, W8 ; If W4 = W8 (Word mode),
018002 CALL _FIR ; skip the subroutine call
018006
018008
Before After
Instruction Instruction
PC 01 8000 PC 01 8006
w4 3344 w4 3344
w8 3344 w8 3344
SR 0002 |(Z=1) SR 0002|(Z=1)

© 2005 Microchip Technology Inc.

Preliminary

DS70157B-page 5-91

)
M
0
)
=
i=l
=
o
>
n

dsPIC30F/33F Programmer’s Reference Manual

CPSGT

Signed Compare Wb with Wn, Skip if Greater Than (Wb > Wn)

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1:

Example 2:

{label:} CPSGT{.B} Wb, Wn

Wb e [WO ... W15]

Wn e [WO ... W15]

(Wb) — (Wn)

Skip if (Wb) > (Wn)

None

‘ 1110 | 0110 | Owww wB00 ‘ 0000 ‘ ssss

Compare the contents of Wb with the contents of Wn by performing the
subtraction (Wb) — (Wn), but do not store the result. If (Wb) > (Wn), the
next instruction (fetched during the current instruction execution) is
discarded and on the next cycle, a NOP is executed instead. Otherwise,
the next instruction is executed as normal.

The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Ws source register.

The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Note:

1
1 (2 or 3 if skip taken)

002000 HERE: CPSGT.B W0, W1; If WO > Wl (Byte mode),
002002 GOTO BYPASS; skip the GOTO

002006

002008 .

00200A BYPASS .

00200C

Before After
Instruction Instruction

PC 00 2000 PC 00 2006

WO O00FF WO O00FF

w1 26FE w1l 26FE

SR 0009 (N, C=1) SR 0009 (N, C=1)
018000 HERE: CPSGT W4, W5 ; If W4 > W5 (Word mode),
018002 CALL _FIR ; skip the subroutine call
018006

018008

Before After
Instruction Instruction

PC 01 8000 PC 01 8002

w4 2600 w4 2600

W5 2600 W5 2600

SR 0004 {(OV =1) SR 0004 [(OV =1)

DS70157B-page 5-92

Prelimi nary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

CPS LT Signed Compare Wb with Wn, Skip if Less Than (Wb < Wn)

Syntax: {label:} CPSLT{.B} Wb, Wn
Operands: Wb € [WO ... W15]

Whn e [WO ... W15]
Operation: (Wb) — (Wn)

Skip if (Wb) < (Wn)
Status Affected: None

Encoding: ‘ 1110 | 0110 ‘ lwww wB00 ‘ 0000 | ssss |

Description: Compare the contents of Wb with the contents of Wn by performing the
subtraction (Wb) — (Wn), but do not store the result. If (Wb) < (Wn), the
next instruction (fetched during the current instruction execution) is
discarded and on the next cycle, a NOP is executed instead. Otherwise, the
next instruction is executed as normal.

The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Ws source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1 (2 or 3 if skip taken)
Example 1: 002000 HERE: CPSLT.B W8, W9 ; If W8 < W9 (Byte mode),
002002 GOTO BYPASS ; skip the GOTO
002006
002008
00200A BYPASS:
00200C
Before After
Instruction Instruction
PC 00 2000 PC 00 2002
W8 OOFF w8 OOFF
W9 26FE W9 26FE
SR 0008 |(N = 1) SR 0008 |(N =1)
Example 2: 018000 HERE: CPSLT W3, W6 ; If W3 < W6 (Word mode),
018002 CALL _FIR ; skip the subroutine call
018006
018008
Before After
Instruction Instruction
PC 01 8000 PC 01 8006
W3 2600 W3 2600
W6 3000 W6 3000
SR 0000 SR 0000

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-93

dsPIC30F/33F Programmer’s Reference Manual

CPSNE

Signed Compare Wb with Wn, Skip if Not Equal (Wb # Wn)

Syntax: {label:} CPSNE{.B} Wb, Wn
Operands: Wb € [WO ... W15]
Whn e [WO ... W15]
Operation: (Wb) — (Wn)
Skip if (Wb) = (Wn)
Status Affected: None
Encoding: | 1110 ‘ 0111 | Owww wB0O0 | 0000 | ssss |
Description: Compare the contents of Wb with the contents of Wn by performing the
subtraction (Wb) — (Wn), but do not store the result. If (Wb) = (Wn), the next
instruction (fetched during the current instruction execution) is discarded
and on the next cycle, a NOP is executed instead. Otherwise, the next
instruction is executed as normal.
The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Ws source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1 (2 or 3 if skip taken)
Example 1: 002000 HERE: CPSNE.B W2, W3 ; If W2 != W3 (Byte mode),
002002 GOTO BYPASS ; skip the GOTO
002006
002008
00200A BYPASS:
00200C
Before After
Instruction Instruction
PC 00 2000 PC 00 2006
w2 OOFF w2 O0OFF
w3 26FE w3 26FE
SR 0001 |(C=1) SR 0001 |(C=1)
Example 2: 018000 HERE: CPSNE WO, W8 ; If WO != W8 (Word mode),
018002 CALL _FIR ; skip the subroutine call
018006
018008
Before After
Instruction Instruction
PC 01 8000 PC 01 8002
W0 3000 w0 3000
ws8 3000 w8 3000
SR 0000 SR 0000
DS70157B-page 5-94 Prelimin ary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

DAW B Decimal Adjust Wn

Syntax: {label:} DAW.B Wn
Operands: Wn e [WO ... W15]
Operation: If (Wn<3:0>>9) or (DC =1)
(Wn<3:0>) + 6 - Wn<3:0>
Else

(Wn<3:0>) —» Wn<3:0>

If (\Wn<7:4>>9)or(C=1)
(Wn<7:4>) + 6 - Wn<7:4>

Else
(Wn<7:4>) - Wn<7:4>
Status Affected: C
Encoding: ‘ 1111 | 1101 0100 0000 0000 ssss
Description: Adjust the Least Significant Byte in Wn to produce a binary coded decimal

(BCD) result. The Most Significant Byte of Wn is not changed, and the
Carry flag is used to indicate any decimal rollover. Register direct
addressing must be used for Wn.

The ‘s’ bits select the source/destination register.

Note 1: This instruction is used to correct the data format after two
packed BCD bytes have been added.
2: This instruction operates in Byte mode only and the .B
extension must be included with the opcode.

Words:
Cycles:
Example 1: DAW.B WO ; Decimal adjust WO
Before After
Instruction Instruction
W0 | 771A WO0| 7720
SR| 0002|(DC=1) SR| 0002 |(DC =1)
Example 2: DAW.B W3 ; Decimal adjust W3
Before After
Instruction Instruction
W3 | 77AA W3| 7710
SR| 0000 SR| 0001 (|(C=1)

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-95

dsPIC30F/33F Programmer’s Reference Manual

DEC

Decrement f

Syntax: {label:} DEC{.B} f {WREG}

Operands: fe [0...8191]

Operation: (f) — 1 — destination designated by D

Status Affected: DC,N,0V, Z,C

Encoding: | 1110 | 1101 | oBDE FEEF FEEF FFEE

Description: Subtract one from the contents of the file register and place the result in the
destination register. The optional WREG operand determines the destina-
tion register. If WREG is specified, the result is stored in WREG. If WREG
is not specified, the result is stored in the file register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination (‘0" for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1. The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2. The WREG is set to working register WO.
Words:
Cycles: 1
Example 1: DEC.B 0x200 ; Decrement (0x200) (Byte mode)
Before After
Instruction Instruction
Data 200| 80FF Data 200| 80FE
SR| 0000 SR| 0009 |(N,C=1)
Examgle 2: DEC RAM400, WREG ; Decrement RAM400 and store to WREG
; (Word mode)
Before After
Instruction Instruction
WREG 1211 WREG| 0822
RAM400| 0823 RAM400| 0823
SR| 0000 SR| 0000

DS70157B-page 5-96

Prelimi nary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

DEC Decrement Ws

Syntax: {label:} DEC{.B} Ws, wd
[ws], [wd]
[Ws++], [Wd++]
[Ws--], [wd--]
[++Ws], [++Wd]
[--Ws], [--wd]
Operands: Ws e [WO ... W15]
Wd e [WO ... W15]
Operation: (Ws)-1->wd
Status Affected: DC,N, 0V, Z,C
Encoding: | 1110 ‘ 1001 ‘ 0Bgq | gddd | dppp | ssss ‘
Description: Subtract one from the contents of the source register Ws and place the

result in the destination register Wd. Either register direct or indirect
addressing may be used by Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words:
Cycles:
Example 1: DEC.B [W7++], [W8++] ; DEC [W7] and store to [W8] (Byte mode)
; Post-increment W7, W8
Before After
Instruction Instruction
W7 2301 W7 2302
w8 2400 W8 2401
Data 2300 5607 Data 2300 5607
Data 2400 ABCD Data 2400 AB55
SR 0000 SR 0000
Example 2: DEC W5, [W6++] ; Decrement W5 and store to [W6] (Word mode)

; Post-increment W6

Before After
Instruction Instruction
W5 D004 W5 D004
W6 2000 W6 2002
Data 2000| ABA9 Data 2000 D003
SR 0000 SR 0009 | (N, C=1)

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-97

dsPIC30F/33F Programmer’s Reference Manual

DEC2

Decrement f by 2

Syntax: {label:} DEC2{B} f {WREG}

Operands: fe[0..8191]

Operation: (f) — 2 — destination designated by D

Status Affected: DC,N,0V, Z,C

Encoding: | 1110 | 1101 | 1BDS FEFE FEFE FEEF

Description: Subtract two from the contents of the file register and place the result in the
destination register. The optional WREG operand determines the destina-
tion register. If WREG is specified, the result is stored in WREG. If WREG
is not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘D’ bit selects the destination (‘0" for WREG, ‘1’ for file register).

The ‘f’ bits select the address of the file register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words:
Cycles:
Example 1: DEC2.B 0x200 ; Decrement (0x200) by 2 (Byte mode)
Before After
Instruction Instruction
Data 200| 80FF Data 200| 80FD
SR| 0000 SR| 0009 [(N,C=1)
Example 2: DEC2 RAM400, WREG ; Decrement RAM400 by 2 and
; store to WREG (Word mode)
Before After
Instruction Instruction
WREG 1211 WREG| 0821
RAM400| 0823 RAM400| 0823
SR| 0000 SR| 0000

DS70157B-page 5-98

Preliminary

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

D ECZ Decrement Ws by 2

Syntax: {label:} DEC2{.B} Ws, wd
[ws], [wd]
[Ws++], [Wd++]
[Ws-], (wd-]
[++Ws], [++wWd]
[-ws], [-Wd]
Operands: Ws e [WO ... W15]
wd e [WO ... W15]
Operation: (Ws) -2 - wd
Status Affected: DC,N,0V, Z,C
Encoding: | 1110 ‘ 1001 ‘ 1Bgq ‘ gddd ‘ dppp | ssss |
Description: Subtract two from the contents of the source register Ws and place the

result in the destination register Wd. Either register direct or indirect
addressing may be used by Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1
Example 1: DEC2.B [W7--], [W8--]; DEC [W7] by 2, store to [W8] (Byte mode)
; Post-decrement W7, W8
Before After
Instruction Instruction
w7 2301 w7 2300
w8 2400 w8 | 23FF
Data 2300 0107 Data 2300 0107
Data 2400| ABCD Data 2400| ABFF
SR 0000 SR 0008 [(N=1)
Example 2: DEC2 W5, [Wé++] ; DEC W5 by 2, store to [W6] (Word mode)
; Post-increment Wé
Before After
Instruction Instruction
W5| D004 W5| D004
W6 1000 W6 1002
Data 1000| ABA9 Data 1000| D002
SR 0000 SR 0009 | (N,C=1)

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-99

dsPIC30F/33F Programmer’s Reference Manual

DISI

Disable Interrupts Temporarily

Syntax: {label:} DISI #lit14
Operands: litl4 € [0 ... 16383]
Operation: litl4 — DISICNT
1 - DIsI
Disable interrupts for (lit14 + 1) cycles
Status Affected: None
Encoding: 1200 | 1100 | ookk | kkkk | kkkk | kkkk |
Description: Disable interrupts of priority O through priority 6 for (lit1l4 + 1) instruction
cycles. Priority 0 through priority 6 interrupts are disabled starting in the
cycle that DISI executes, and remain disabled for the next (lit 14) cycles.
The lit14 value is written to the DISICNT register, and the DISI flag
(INTCON2<14>) is set to ‘1'. This instruction can be used before
executing time critical code, to limit the effects of interrupts.
Note: This instruction does not prevent priority 7 interrupts and traps
from running. See the dsPIC30F Family Reference Manual
(DS70046) for details.
Words:
Cycles:
Example 1: 002000 HERE: DISI #100 ; Disable interrupts for 101 cycles
002002 ; next 100 cycles protected by DISI
002004
Before After
Instruction Instruction
PC 00 2000 PC 00 2002
DISICNT 0000 DISICNT 0100
INTCON2 0000 INTCON2 4000 | (DISI =1)
SR 0000 SR 0000

DS70157B-page 5-100

Prelimi nary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

DIV.S

Signed Integer Divide

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

{label:} DIV.S{W} Wm, Wn
DIV.SD Wm, Wn

Wm € [WO ... W15] for word operation
Wm e [W0, W2, W4 ... W14] for double operation
Wn e [W2 ... W15]

For word operation (default):
Wm — WO
If (Wm<15>=1):
OXFFFF — W1
Else:
ox0 - W1
W1:W0 / Wn — WO
Remainder - W1

For double operation (DIV.SD):
Wm + 1:Wm — W1:W0
W1:W0 / Wn — WO
Remainder — W1

N, 0V, Z,C

1101 | 1000 ‘ ottt ‘ tvvv | vWO0O0 ‘ ssss |

Iterative, signed integer divide, where the dividend is stored in Wm (for a
16-hit by 16-bit divide) or Wm + 1:Wm (for a 32-hit by 16-bit divide) and
the divisor is stored in Wn. In the default word operation, Wm is first cop-
ied to WO and sign-extended through W1 to perform the operation. In the
double operation, Wm + 1:Wm is first copied to W1:WO0. The 16-bit quo-
tient of the divide operation is stored in WO, and the 16-bit remainder is
stored in W1.

This instruction must be executed 18 times using the REPEAT instruction
(with an iteration count of 17) to generate the correct quotient and
remainder. The N flag will be set if the remainder is negative and cleared
otherwise. The OV flag will be set if the divide operation resulted in an
overflow and cleared otherwise. The Z flag will be set if the remainder is
‘0’ and cleared otherwise. The C flag is used to implement the divide
algorithm and its final value should not be used.

The ‘t’ bits select the most significant word of the dividend for the double
operation. These bits are clear for the word operation.

The ‘v’ bits select the least significant word of the dividend.

The ‘W’ bit selects the dividend size (‘0’ for 16-bit, ‘1’ for 32-hit).

The ‘s’ bits select the divisor register.

Note 1: The extension .D in the instruction denotes a double word
(32-bit) dividend rather than a word dividend. You may use a . W
extension to denote a word operation, but it is not required.

2: Unexpected results will occur if the quotient can not be repre-
sented in 16 bits. When this occurs for the double operation
(DIV.SD), the OV status hit will be set and the quotient and
remainder should not be used. For the word operation (DIV.S),
only one type of overflow may occur (0x8000/0XFFFF = +
32768 or 0x00008000), which allows the OV status bit to inter-
pret the result.

3: Dividing by zero will initiate an arithmetic error trap during the
first cycle of execution.

4: This instruction is interruptible on each instruction cycle
boundary.

© 2005 Microchip Technology Inc.

Preliminary DS70157B-page 5-101

suondiiosag

dsPIC30F/33F Programmer’s Reference Manual

DIV.S

Signed Integer Divide

Words:
Cycles:

Example 1:

Example 2:

1

18 (plus 1 for REPEAT execution)

REPEAT #17
DIV.S W3, W4

Before
Instruction
WO 5555
W1 1234
W3 3000
W4 0027
SR 0000

REPEAT #17
DIV.SD WO, W12

Before
Instruction

WO| 2500

W1| FF42

W12| 2200

SR| 0000

; Execute DIV.S 18 times
; Divide W3 by W4
; Store quotient to WO, remainder to W1

w0
wi
W3
w4
SR

After
Instruction

013B

0003

3000

0027

0000

; Execute DIV.SD 18 times

; Divide W1:WO0 by W12

; Store quotient to WO, remainder to W1

WO
wi
W12
SR

After
Instruction

FAGB

EF00

2200

0008

(N=1)

DS70157B-page 5-102

Preliminary

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

DIV.U

Unsigned Integer Divide

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

{label:} DIV.U{W} Wm, Wn
DIV.UD Wm, Wn

Wm e [WO ... W15] for word operation
Wm e [WO0, W2, W4 ... W14] for double operation
Wn e [W2 ... W15]

For word operation (default):
Wm — W0
ox0 - W1
W1:WO0/Wn — WO
Remainder - W1

For double operation (DIV.UD):
Wm + 1:.Wm — W1:W0
W1:W0/Wns — WO
Remainder — W1

N, 0V, Z,C

1101 1000 ‘ 1ttt ‘ tvvv | vWO0O0 ‘ ssss |

Iterative, unsigned integer divide, where the dividend is stored in Wm (for
a 16-bit by 16-bit divide), or Wm + 1:.Wm (for a 32-bit by 16-bit divide) and
the divisor is stored in Wn. In the word operation, Wm is first copied to WO
and W1 is cleared to perform the divide. In the double operation,

Wm + 1:Wm is first copied to W1:WO0. The 16-bit quotient of the divide
operation is stored in WO, and the 16-bit remainder is stored in W1.

This instruction must be executed 18 times using the REPEAT instruction
(with an iteration count of 17) to generate the correct quotient and
remainder. The N flag will always be cleared. The OV flag will be set if the
divide operation resulted in an overflow and cleared otherwise. The Z flag
will be set if the remainder is ‘0’ and cleared otherwise. The C flag is used
to implement the divide algorithm and its final value should not be used.

The ‘t’ bits select the most significant word of the dividend for the double
operation. These bits are clear for the word operation.

The ‘v’ bits select the least significant word of the dividend.

The ‘W’ bit selects the dividend size (‘0’ for 16-bit, ‘1’ for 32-bit).

The ‘s’ bits select the divisor register.

Note 1: The extension .D in the instruction denotes a double word
(32-bit) dividend rather than a word dividend. You may use a . W
extension to denote a word operation, but it is not required.

2: Unexpected results will occur if the quotient can not be
represented in 16 bits. This may only occur for the double oper-
ation (DIV.UD). When an overflow occurs, the OV status bit will
be set and the quotient and remainder should not be used.

3: Dividing by zero will initiate an arithmetic error trap during the
first cycle of execution.

4: This instruction is interruptible on each instruction cycle
boundary.

1

18 (plus 1 for REPEAT execution)

© 2005 Microchip Technology Inc.

Preliminary DS70157B-page 5-103

)
M
0
)
=
i=l
=
o
>
n

dsPIC30F/33F Programmer’s Reference Manual

Example 1: REPEAT #17

DIV.U W2, W4

Before
Instruction
WO0| 5555
w1 1234
w2| 8000
w4| 0200
SR 0000

Example 2: REPEAT #17
DIV.UD W10,

Before
Instruction

WO 5555
w1 1234
W10| 2500
w11 0042
W12| 2200
SR 0000

W12

7
7

7

i
I

7

Execute DIV.U 18 times
Divide W2 by W4
Store quotient to WO, remainder to W1

WO
wi
w2
w4
SR

After

Instruction

0040

0000

8000

0200

0002

(z=1)

Execute DIV.UD 18 times
Divide W11:W10 by W12
Store quotient to W0, remainder to W1

Instruction

WO
wi
w10
w11
W12
SR

After

01F2

0100

2500

0042

2200

0000

DS70157B-page 5-104

Preliminary

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

DIVF Fractional Divide

Syntax: {label:} DIVF Wm, Wn
Operands: Wm e [WO ... W15]

Wn e [W2 ... W15]
Operation: 0x0 —» WO

Wm - W1

W1:W0/Wn — WO
Remainder — W1

Status Affected: N, QV, Z, C
Encoding: 1101 1001 ottt £000 0000 ssss

Description: Iterative, signed fractional 16-bit by 16-bit divide, where the dividend is
stored in Wm and the divisor is stored in Wn. To perform the operation,
WO is first cleared and Wm is copied to W1. The 16-bit quotient of the
divide operation is stored in WO, and the 16-bit remainder is stored in W1.
The sign of the remainder will be the same as the sign of the dividend.

This instruction must be executed 18 times using the REPEAT instruction
(with an iteration count of 17) to generate the correct quotient and
remainder. The N flag will be set if the remainder is negative and cleared
otherwise. The OV flag will be set if the divide operation resulted in an
overflow and cleared otherwise. The Z flag will be set if the remainder is
‘0’ and cleared otherwise. The C flag is used to implement the divide
algorithm and its final value should not be used.

The ‘t’ bits select the dividend register.
The ‘s’ bits select the divisor register.

Note 1: For the fractional divide to be effective, Wm must be less than
or equal to Wn. If Wm is greater than Wn, unexpected results
will occur because the fractional result will be greater than 1.0.
When this occurs, the OV status bit will be set and the quotient
and remainder should not be used.
2: Dividing by zero will initiate an arithmetic error trap during the
first cycle of execution.
3: This instruction is interruptible on each instruction cycle

boundary.
Words: 1
Cycles: 18 (plus 1 for REPEAT execution)
Example 1: REPEAT #17 ; Execute DIVF 18 times
DIVF W8, W9 ; Divide W8 by W9
; Store quotient to W0, remainder to W1
Before After
Instruction Instruction
WO0| 8000 WO0| 2000
W1 1234 W1| 0000
W8 1000 W8 1000
W9 | 4000 W9 | 4000
SR 0000 SR| 0002|(Z=1)

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-105

dsPIC30F/33F Programmer’s Reference Manual

Example 2:

Example 3:

REPEAT #17
DIVF W8, W9
Before
Instruction
WO | 8000
w1 1234
w8 1000
W9 | 8000
SR 0000
REPEAT #17

DIVF WO, W1l
Before
Instruction
WO | 8002
Ww1| 8001
SR 0000

7
7

7

7
7

7

Execute DIVF 18 times
Divide W8 by W9
Store quotient to WO, remainder to W1

WO
w1
w8
W9
SR

After

Instruction

FO000

0000

1000

8000

0002

(z2=1)

Execute DIVF 18 times
Divide WO by W1l

Store quotient to WO,

WO
w1
SR

After

Instruction

7TFFE

8002

0008

(N=1)

remainder to W1

DS70157B-page 5-106

Preliminary

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

DO

Initialize Hardware Loop Literal

Syntax: {label:} DO #lit14, Expr
Operands: litl4 € [0 ... 16383]

Expr may be an absolute address, label or expression.

Expr is resolved by the linker to a Slit16, where Slit16 € [-32768 ... +32767].
Operation: PUSH DO shadows (DCOUNT, DOEND, DOSTART)

(lit14) —» DCOUNT

(PC)+4 > PC

(PC) —» DOSTART

(PC) + (2 * Slit16) - DOEND
Increment DL<2:0> (CORCON<10:8>)

Status Affected: DA

Encoding: 0000 1000 00kk kkkk kkkk kkkk
0000 0000 nnnn nnnn nnnn nnnn
Description: Initiate a no overhead hardware DO loop, which is executed (lit14 + 1)

times. The DO loop begins at the address following the DO instruction, and
ends at the address 2 * Slitl16 instruction words away. The 14-bit count
value (lit14) supports a maximum loop count value of 16384, and the 16-bit
offset value (Slit16) supports offsets of 32K instruction words in both
directions.

When this instruction executes, DCOUNT, DOSTART and DOEND are first
PUSHed into their respective shadow registers, and then updated with the
new DO loop parameters specified by the instruction. The DO level count,
DL<2:0> (CORCON<8:10>), is then incremented. After the DO loop
completes execution, the PUSHed DCOUNT, DOSTART and DOEND
registers are restored, and DL<2:0> is decremented.

The ‘K’ bits specify the loop count.
The ‘n’ bits are a signed literal that specifies the number of instructions
offset from the PC to the last instruction executed in the loop.

Special Features, Restrictions:
The following features and restrictions apply to the DO instruction.

1. Using a loop count of ‘0" will result in the loop being executed one
time.

2. Using a loop size of -2, -1 or 0 is invalid. Unexpected results may
occur if these offsets are used.

3. The very last two instructions of the DO loop can NOT be:
¢ an instruction which changes program control flow
e a DO or REPEAT instruction

Unexpected results may occur if any of these instructions are used.

Note 1: The DO instruction is interruptible and supports 1 level of
hardware nesting. Nesting up to an additional 5 levels may be
provided in software by the user. See the dsPIC30F Family
Reference Manual (DS70046) for details.

2: The linker will convert the specified expression into the offset to
be used.

Words:
Cycles:

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-107

dsPIC30F/33F Programmer’s Reference Manual

Example 1:

Example 2:

(5 reps)

(352 reps)

002000 LOOPS6: DO #5, END6 ; Initiate DO loop
002004 ADD Wl, W2, W3 ; First instruction in loop
002006
002008 ..
00200A END6: SUB W2, W3, W4 ; Last instruction in loop
00200cC
Before After
Instruction Instruction
PC 00 2000 PC 00 2004
DCOUNT 0000 DCOUNT 0005
DOSTART FF FFFF DOSTART 00 2004
DOEND FF FFFF DOEND 00 200A
CORCON 0000 CORCON 0100 (DL =1)
SR 0001|(C=1) SR 0201|(DA, C=1)
01C000 LOOP12: DO #0x160, ENDI12 ; Init DO loop
01C004 DEC W1, W2 ; First instruction in loop
01C006
01C008
01C00A
01coocC
01COO0E ...
01Co010 CALL _FIR88 ; Call the FIR88 subroutine
01C014 END12: NOP ; Last instruction in loop
; (Required NOP filler)
Before After
Instruction Instruction
PC[01 Co000 PC|[01 cCo004
DCOUNT 0000 DCOUNT 0160
DOSTART FF FFFF DOSTART 01 C004
DOEND FF FFFF DOEND 01 C014
CORCON 0000 CORCON 0100 |(DL = 1)
SR 0008 |(N = 1) SR 0208 |(DA, N = 1)

DS70157B-page 5-108

Preliminary

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

DO

Initialize Hardware Loop Wn

Syntax: {label:} DO Whn, Expr
Operands: Wn e [WO ... W15]

Expr may be an absolute address, label or expression.

Expr is resolved by the linker to a Slit16, where Slit16 € [-32768 ... +32767].
Operation: PUSH Shadows (DCOUNT, DOEND, DOSTART)

(Wn) - DCOUNT

(PC)+4 > PC

(PC) — DOSTART

(PC) + (2 * Slit16) - DOEND
Increment DL<2:0> (CORCON<10:8>)

Status Affected: DA
0000 1000 1000 0000 0000 ssss

Encoding: 0000 0000 nnnn nnnn nnnn nnnn

Description: Initiate a no overhead hardware DO loop, which is executed (Wn + 1) times.
The DO loop begins at the address following the DO instruction, and ends at
the address 2 * Slit16 instruction words away. The lower 14 bits of Wn
support a maximum count value of 16384, and the 16-bit offset value

(Slit16) supports offsets of 32K instruction words in both directions.

When this instruction executes, DCOUNT, DOSTART and DOEND are first
PUSHed into their respective shadow registers, and then updated with the
new DO loop parameters specified by the instruction. The DO level count,
DL<2:0> (CORCON<8:10>), is then incremented. After the DO loop
completes execution, the PUSHed DCOUNT, DOSTART and DOEND
registers are restored, and DL<2:0> is decremented.

The ‘s’ bits specify the register Wn that contains the loop count.
The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC + 4), which is the last instruction executed in the loop.

Special Features, Restrictions:
The following features and restrictions apply to the DO instruction.

1. Using a loop count of ‘0’ will result in the loop being executed one
time.

2. Using an offset of -2, -1 or 0 is invalid. Unexpected results may occur
if these offsets are used.

3. The very last two instructions of the DO loop can NOT be:
¢ an instruction which changes program control flow
e a DO or REPEAT instruction
Unexpected results may occur if these last instructions are used.

Note 1: The DO instruction is interruptible and supports 1 level of nesting.
Nesting up to an additional 5 levels may be provided in software
by the user. See the dsPIC30F Family Reference Manual
(DS70046) for details.

2: The linker will convert the specified expression into the offset to
be used.

Words:
Cycles:

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-109

dsPIC30F/33F Programmer’s Reference Manual

Example 1:

Example 2:

002000
002004
002006
002008
00200A
00200C
00200E
002010

LOOP6:

END6 :

Before
Instruction

PC

00 2000

WO

0012

DCOUNT

0000

DOSTART

FF FFFF

DOEND

FF FFFF

CORCON

0000

SR

0000

002000
002004
002006
002008
00200A
002010

LOOPA:

ENDA:

Before

Instruction

PC

00 2000

w7

EOOF

DCOUNT

0000

DOSTART

FF FFFF

DOEND

FF FFFF

CORCON

0000

SR

0000

DO
ADD

REPEAT
SUB
NOP

DO
SWAP

MOV

; Initiate DO loop

(WO reps)

; First instruction in loop

; Last instruction in loop
; (Required NOP filler)

; Initiate DO loop

(DL =1)
(DA=1)

(W7 reps)

; First instruction in loop

; Last instruction in loop

WO, END6
Wl, W2, W3
#6
W2, W3, W4
After
Instruction
PC 00 2004
WO 0012
DCOUNT 0012
DOSTART 00 2004
DOEND 00 2010
CORCON 0100
SR 0080
W7, ENDA
WO
W1, [W2++]
After
Instruction
PC 00 2004
w7 EOOF
DCOUNT 200F
DOSTART 00 2004
DOEND 00 2010
CORCON 0100
SR 0080

(DL =1)
(DA=1)

DS70157B-page 5-110

Preliminary

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

ED Euclidean Distance (No Accumulate)

Syntax: {label:} ED Wm * Wm, Acc, [Wx], [Wy], Wxd
[Wx] + = kx, [Wy] + = ky,
[Wx] — = kx, [Wy] - = ky,
W9 + W12], W1l + W12],

Operands: Acc € [A,B]
Wm * Wm e [W4 * W4, W5 * W5, W6 * W6, W7 * W7]
Wx e [W8, W9J; kx € [-6, -4, -2, 2, 4, 6]
Wy e [W10, W11]; ky € [-6, -4, -2, 2, 4, 6]
Wxd € [W4 ... W7]

Operation: (Wm) * (Wm) — Acc(A or B)
((Wx] - [Wy]) - Wxd
(Wx) + kx — WX
(Wy) + ky — Wy

Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: 1111 00mm Alxx 00ii iijj ‘ jji1 |
Description: Compute the square of Wm, and optionally compute the difference of the

prefetch values specified by [Wx] and [Wy]. The results of Wm * Wm are
sign-extended to 40 bits and stored in the specified accumulator. The
results of [Wx] — [Wy] are stored in Wxd, which may be the same as Wm.

Operands Wx, Wxd and Wyd specify the prefetch operations which
support indirect and register offset addressing as described in
Section 4.14.1 “MAC Prefetches”.

The ‘m’ bits select the operand register Wm for the square.
The ‘A’ bit selects the accumulator for the result.

The ‘X’ bits select the prefetch difference Wxd destination.
The ‘i’ bits select the Wx prefetch operation.

The ' bits select the WYy prefetch operation.

Words: 1
Cycles: 1

Example 1: ED W4*W4, A, [W8]+=2, [W10]-=2, W4; Square W4 to ACCA
; [W8]-[W1l0] to W4
; Post-increment W8
; Post-decrement W10

Before After

Instruction Instruction
w4 009A w4 0057
w8 1100 w8 1102
W10 2300 W10 22FE
ACCA 00 3D0A 0000 ACCA 00 0000 5CA4
Data 1100 007F Data 1100 007F
Data 2300 0028 Data 2300 0028
SR 0000 SR 0000

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-111

dsPIC30F/33F Programmer’s Reference Manual

Example 2: ED WS5*W5, B, [W9]+=2, [W1l+W12], W5 ; Square W5 to ACCB
; [W9l-[W1l+W1l2] to W5
; Post-increment W9

Before After

Instruction Instruction
W5 43C2 W5 3F3F
W9 1200 w9 1202
w1l 2500 w11 2500
w12 0008 w12 0008
ACCB| 00 28E3F14C ACCB 00 11EF 1F04
Data 1200 6A7C Data 1200 6A7C
Data 2508 2B3D Data 2508 2B3D
SR 0000 SR 0000

DS70157B-page 5-112 Prelimin ary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

EDAC Euclidean Distance

Syntax: {label:} EDAC Wm * Wm, Acc, [Wx], [Wy], Wxd
[Wx] + = kx, [Wy] + = ky,
[Wx] — = kx, [Wy] - = ky,
[W9 + W12], [W1l + W12],

Operands: Acc € [A,B]
Wm *Wm e [W4 * W4, W5 * W5, W6 * W6, W7 * W7]
Wx e [W8, W9J; kx € [-6, -4, -2, 2, 4, 6]
Wy e [W10, W11]; ky € [-6, -4, -2, 2, 4, 6]
Wxd e [W4 ... W7]

Operation: (Acc(A or B)) + (Wm) * (Wm) — Acc(A or B)
(IWx] — [Wy]) — Wxd
(WxX) + kx — WX
(Wy) + ky — Wy

Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: 1111 00mm | Alxx ‘ 0011 iijj ‘ jj1o |
Description: Compute the square of Wm, and also the difference of the prefetch values

specified by [Wx] and [Wy]. The results of Wm * Wm are sign-extended to
40 bits and added to the specified accumulator. The results of [Wx] — [Wy]
are stored in Wxd, which may be the same as Wm.

Operands Wx, Wxd and Wyd specify the prefetch operations which
support indirect and register offset addressing as described in
Section 4.14.1 “MAC Prefetches”.

The ‘m’ bits select the operand register Wm for the square.
The ‘A’ bit selects the accumulator for the result.

The ‘X’ bits select the prefetch difference Wxd destination.
The ‘I’ bits select the Wx prefetch operation.

The ‘' bits select the Wy prefetch operation.

Words: 1
Cycles: 1
Example 1: EDAC W4*W4, A, [W8]+=2, [wl0]-=2, W4 ; Square W4 and
; add to ACCA
; [W8]-[W1l0] to W4
; Post-increment W8
; Post-decrement W10
Before After
Instruction Instruction
W4 009A w4 0057
W8 1100 W8 1102
W10 2300 W10 22FE
ACCA 00 3DO0OA 3D0A ACCA | 00 3D0A 99AE
Data 1100 007F Data 1100 007F
Data 2300 0028 Data 2300 0028
SR 0000 SR 0000

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-113

dsPIC30F/33F Programmer’s Reference Manual

Example 2:
W5
w9
w11
W12
ACCB
Data 1200
Data 2508
SR

EDAC W5*W5, B, [w9]+=2,

Before
Instruction

43C2

1200

2500

0008

00 28E3 F14C

6A7C

2B3D

0000

W5 ; Square W5 and
; add to ACCB
;o [Wol-[wWll+w1i2]

to W5

; Post-increment W9

[W11+W12],
After
Instruction
w5 3F3F
W9 1202
w1l 2500
W12 0008
ACCB 00 3AD3 1050
Data 1200 6A7C
Data 2508 2B3D
SR 0000

DS70157B-page 5-114

Preliminary

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

EXCH Exchange Wns and Wnd

Syntax: {label:} EXCH Whns, Wnd
Operands: Wns € [WO ... W15]
Wnd e [WO ... W15]
Operation: (Wns) < (Wnd)
Status Affected: None
Encoding: | 1111 | 1101 0000 0ddd 4000 ‘ ssss ‘
Description: Exchange the word contents of two working registers. Register direct

addressing must be used for Wns and Wnd.

The ‘d’ bits select the address of the first register.
The ‘s’ bits select the address of the second register.

Note: This instruction only executes in Word mode.

Words: 1
Cycles: 1
Example 1: EXCH W1, W9 ; Exchange the contents of W1 and W9
Before After
Instruction Instruction
w1 55FF w1 A3A3
W9 A3A3 W9 55FF
SR 0000 SR 0000
Example 2: EXCH W4, W5 ; Exchange the contents of W4 and W5
Before After
Instruction Instruction
W4 ABCD W4 4321
W5 4321 W5 ABCD
SR 0000 SR 0000

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-115

dsPIC30F/33F Programmer’s Reference Manual

FBCL

Find First Bit Change from Left

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1:

{label:} FBCL Ws, Wnd
[ws],
[Ws++],
[Ws-],
[++Ws],
[--Ws],

WSs e [WO ... W15]
Wnd e [WO ... W15]

Max_Shift = 15

Sign = (Ws) & 0x8000

Temp = (Ws) << 1

Shift =0

While ((Shift < Max_Shift) && ((Temp & 0x8000) == Sign))
Temp=Temp << 1
Shift = Shift + 1

-Shift — (Wnd)

C

1101 1111 0000 0ddd dppp ssss

Find the first occurrence of a one (for a positive value), or zero (for a
negative value), starting from the Most Significant bit after the sign bit of
Ws and working towards the Least Significant bit of the word operand. The
bit number result is sign-extended to 16 bits and placed in Wnd.

The next Most Significant bit after the sign bit is allocated bit number 0 and
the Least Significant bit is allocated bit number -14. This bit ordering
allows for the immediate use of Wd with the SFTAC instruction for scaling
values up. If a bit change is not found, a result of -15 is returned and the C
flag is set. When a bit change is found, the C flag is cleared.

The ‘d’ bits select the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the source register.

Note: This instruction operates in Word mode only.

FBCL W1, W9 ; Find 1st bit change from left in Wl

wi
W9
SR

; and store result to W9

Before After
Instruction Instruction
55FF W1 | 55FF
FFFF W9 0000
0000 SR 0000

DS70157B-page 5-116

Prelimi nary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2: FBC

w1
w9
SR

Example 3: FBC

w1
W9
Data 2000
SR

L W1, WS

Before
Instruction

FFFF
BBBB
0000

L [Wl++]1, W9

Before
Instruction

2000
BBBB
FFOA
0000

; Find 1st bit change from left in Wl

; and store result to W9

After
Instruction

wi[FFFF
wo| FFF1

SrR| 0001 |(C=1)

; Find 1st bit change from left in [W1]
; and store result to W9

; Post-increment W1

After
Instruction

W1| 2002
W9| FFF9
Data 2000| FFOA
SR| 0000

© 2005 Microchip Technology Inc.

Preliminary

DS70157B-page 5-117

)
M
0
)
=
i=l
=
o
>
n

dsPIC30F/33F Programmer’s Reference Manual

FFlL Find First One from Left

Syntax: {label:} FF1L Ws, Wnd
[Ws],
[Ws++],
[VVS"]!
[++Ws],
[--Ws],
Operands: Ws e [WO ... W15]
Wnd € [WO ... W15]
Operation: Max_Shift =17
Temp = (Ws)
Shift =1

While ((Shift < Max_Shift) && !(Temp & 0x8000))
Temp=Temp << 1

Shift = Shift + 1
If (Shift == Max_Shift)
0 — (Wnd)
Else
Shift — (Wnd)
Status Affected: C
Encoding: 1100 1111 1000 0ddd dppp | ssss |
Description: Finds the first occurrence of a ‘1’ starting from the Most Significant bit of

Ws and working towards the Least Significant bit of the word operand.
The bit number result is zero-extended to 16 bits and placed in Wnd.

Bit numbering begins with the Most Significant bit (allocated number 1)
and advances to the Least Significant bit (allocated number 16). A result
of zero indicates a ‘1’ was not found, and the C flag will be set. Ifa ‘1’ is
found, the C flag is cleared.

The ‘d’ bits select the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the source register.

Note: This instruction operates in Word mode only.
Words:
Cycles:

Example 1: FF1L W2, WS ; Find the 1st one from the left in W2
; and store result to W5

Before After
Instruction Instruction
W2 | O000A W2 | 000A
W5 | BBBB W5 000D
SR 0000 SR 0000

DS70157B-page 5-118 Prelimin ary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2: FF1L [W2++], W5 ; Find the 1st one from the left in [W2]
; and store the result to W5
; Post-increment W2

Before After
Instruction Instruction
w2 2000 w2 2002
W5 | BBBB W5 0000
Data 2000 0000 Data 2000 0000
SR 0000 SR 0001 | (C=1)

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-119

dsPIC30F/33F Programmer’s Reference Manual

FF1R

Find First One from Right

Syntax:

Operands:

Operation:

Status Affected:
Encoding:

Description:

Words:
Cycles:

{label:} FF1R

WSs,

[ws],
[Ws++],
[Ws--],
[++Ws],
[--Ws],

Ws e [WO ... W15]

Wnd e [WO ... W15]
Max_Shift = 17
Temp = (Ws)
Shift=1

Wnd

While ((Shift < Max_Shift) && !(Temp & Ox1))
Temp = Temp >> 1
Shift = Shift + 1

If (Shift == Max_Shift)

0 — (Wnd)

Else

Shift — (Wnd)

C

1100

1111

0000

0ddd dppp | ssss |

Finds the first occurrence of a ‘1’ starting from the Least Significant bit of
Ws and working towards the Most Significant bit of the word operand. The
bit number result is zero-extended to 16 bits and placed in Wnd.

Bit numbering begins with the Least Significant bit (allocated nhumber 1)
and advances to the Most Significant bit (allocated number 16). A result of
zero indicates a ‘1’ was not found, and the C flag will be set. If a ‘1’ is

found, the C flag is cleared.

The ‘d’ bits select the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the source register.

Note: This instruction operates in Word mode only.

Example 1: FF1R W1, W9

wi
W9
SR

Before
Instruction

000A
BBBB
0000

; Find the 1st one from the right in W1
; and store the result to W9

w1
W9
SR

After
Instruction

000A
0002
0000

DS70157B-page 5-120

Preliminary

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2: FF1IR [Wl++], W9 ; Find the 1st one from the right in [W1]
; and store the result to W9
; Post-increment W1
Before After
Instruction Instruction

W1 2000 W1 2002

W9 | BBBB W9 0010

Data 2000 8000 Data 2000 8000

SR 0000 SR 0000

© 2005 Microchip Technology Inc.

Preliminary DS70157B-page 5-121

)
M
0
)
=
i=l
=
o
>
n

dsPIC30F/33F Programmer’s Reference Manual

GOTO

Unconditional Jump

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
1st word
2nd word

Description:

Words:
Cycles:

Example 1:

Example 2:

{label:} GOTO Expr

Expr may be label or expression (but not a literal).
Expr is resolved by the linker to a lit23, where lit23 € [0 ... 8388606].

lit23 —» PC
NOP — Instruction Register

None
0000 0100 nnnn nnnn nnnn nnnO0
0000 0000 0000 0000 Onnn nnnn

Unconditional jump to anywhere within the 4M instruction word program
memory range. The PC is loaded with the 23-bit literal specified in the
instruction. Since the PC must always reside on an even address boundary,
lit23<0> is ignored.

The ‘n’ bits form the target address.

Note: The linker will resolve the specified expression into the lit23 to be
used.
026000 GOTO _THERE ; Jump to _THERE
026004 MOV Wo, Wi
027844 THERE: MOV #0x400, W2 ; Code execution
027846 . ; resumes here
Before After
Instruction Instruction
PC 02 6000 PC 02 7844
SR 0000 SR 0000
000100 _code: ... ; start of code
026000 GOTO _code+2 ; Jump to _code+2
026004
Before After
Instruction Instruction
PC 02 6000 PC 00 0102
SR 0000 SR 0000

DS70157B-page 5-122

Prelimi nary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

GOTO

Unconditional Indirect Jump

Syntax:

Operands:
Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1:

{label:} GOTO Wn

Wn e [WO ... W15]
0 - PC<22:16>

(W

n<15:1>) —» PC<15:1>

0 — PC<0>

NO
No

P — Instruction Register
ne

0000 0001 01

00

0000

0000 ‘ ssss

Unconditional indirect jump within the first 32K words of program memory.
Zero is loaded into PC<22:16> and the value specified in (Wn) is loaded
into PC<15:1>. Since the PC must always reside on an even address
boundary, Wn<0> is ignored.

The ‘s’ bits select the source register.

1
2

006000
006002

GOTO w4

MOV WO, W1

007844 _THERE: MOV #0x400),

007846
Before
Instruction
w4 7844
PC 00 6000
SR 0000

W2

; Jump unconditionally
; to 16-bit value in W4

; Code execution
; resumes here

After
Instruction

w4

7844

PC

00 7844

SR

0000

© 2005 Microchip Technology Inc.

Preliminary

DS70157B-page 5-123

)
M
0
)
=
i=l
=
o
>
n

dsPIC30F/33F Programmer’s Reference Manual

|NC Increment f

Syntax: {label:} INC{.B} f {{\WREG}

Operands: fe [0...8191]

Operation: (f) + 1 — destination designated by D

Status Affected: DC,N,0V, Z,C

Encoding: 1110 1100 O0BDf ffff ffff | ffff |

Description: Add one to the contents of the file register and place the result in the
destination register. The optional WREG operand determines the
destination register. If WREG is specified, the result is stored in WREG. If
WRERG is not specified, the result is stored in the file register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1. The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.
Words:
Cycles:
Example 1: INC.B 0x1000 ; Increment 0x1000 (Byte mode)
Before After
Instruction Instruction
Data 1000 | 8FFF Data 1000 8F00
SR 0000 SR 0101 | (DC,C=1)
Example 2: INC 0x1000, WREG ; Increment 0x1000 and store to WREG
; (Word mode)
Before After
Instruction Instruction
WREG | ABCD WREG 9000
Data 1000 | 8FFF Data 1000 | 8FFF
SR | 0000 SR 0108 | (DC, N =1)

DS70157B-page 5-124

Prelimi nary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

|NC Increment Ws

Syntax: {label:} INC{.B} Ws, wd
[Ws], [Wd]
[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[--Ws], [--Wd]
Operands: Ws e [WO ... W15]
Wd e [WO ... W15]
Operation: (Ws) +1 - wd
Status Affected: DC,N,0QV, Z, C
Encoding: 1110 1000 0Bggq gddd dppp ‘ ssss |
Description: Add one to the contents of the source register Ws and place the result in

the destination register Wd. Register direct or indirect addressing may be
used for Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words:
Cycles:
Example 1: INC.B W1, [++W2] ; Pre-increment W2
; Increment W1l and store to W2
; (Byte mode)
Before After
Instruction Instruction
W1 FF7F W1 FF7F
W2 2000 W2 2001
Data 2000 | ABCD Data 2000 80CD
SR 0000 SR 010C | (DC, N, OV =1)
Example 2: INC W1, W2 ; Increment W1l and store to W2

; (Word mode)

Before After
Instruction Instruction
W1| FF7F W1 | FF7F
W2 2000 W2 FF80
SR 0000 SR 0108 | (DC, N = 1)

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-125

dsPIC30F/33F Programmer’s Reference Manual

|NC2 Increment f by 2

Syntax: {label:} INC2{.B} f {{WREG}

Operands: fe [0...8191]

Operation: (f) + 2 — destination designated by D

Status Affected: DC,N,0QV, Z, C

Encoding: 1110 1100 1BDf ffff ffff | ffff |
Description: Add two to the contents of the file register and place the result in the

destination register. The optional WREG operand determines the
destination register. If WREG is specified, the result is stored in WREG. If
WREG is not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words:
Cycles:
Example 1: INC2.B 0x1000 ; Increment 0x1000 by 2
; (Byte mode)
Before After
Instruction Instruction
Data 1000 8FFF Data 1000 8F01
SR 0000 SR 0101 | (DC,C=1)
Examgle 2: INC2 0x1000, WREG ; Increment 0x1000 by 2 and store to WREG
; (Word mode)
Before After
Instruction Instruction
WREG | ABCD WREG 9001
Data 1000 8FFF Data 1000 8FFF
SR 0000 SR 0108 | (DC,N = 1)

DS70157B-page 5-126 Prelimin ary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

INCZ Increment Ws by 2

Syntax: {label:} INC2{.B} Ws, wd
[ws], [wd]
[Ws++], [Wd++]
[Ws-], [Wd--]
[++Ws], [++wd]
[-Ws], [-Wd]
Operands: Ws e [WO ... W15]
Wd e [WO ... W15]
Operation: (Ws) +2 > wd
Status Affected: DC, N, OV, Z,C
Encoding: 1110 1000 1Bgg gddd dppp | ssss ‘
Description: Add two to the contents of the source register Ws and place the result in the

destination register Wd. Register direct or indirect addressing may be used
for Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .wW extension to
denote a word operation, but it is not required.

Words:
Cycles:
Example 1: INC2.B W1, [++W2] ; Pre-increment W2
; Increment by 2 and store to W1
; (Byte mode)
Before After
Instruction Instruction
W1 FF7F w1 FF7F
W2 2000 W2 2001
Data 2000 | ABCD Data 2000 | 81CD
SR 0000 SR 010C | (DC, N, OV =1)
Example 2: INC2 W1, W2 ; Increment W1 by 2 and store to W2

; (word mode)

Before After
Instruction Instruction
W1 | FF7F W1 | FF7F
w2 2000 w2 FF81
SR 0000 SR 0108 | (DC, N = 1)

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-127

dsPIC30F/33F Programmer’s Reference Manual

|OR Inclusive OR f and WREG
{label:} IOR{.B} f {{WREG}
Operands: fe [0...8191]
Operation: (f).IOR.(WREG) — destination designated by D
Status Affected: N, Z
Encoding: | 1011 | 0111 OBDf ffff ffff ‘ ffff |
Description: Compute the logical inclusive OR operation of the contents of the working

register WREG and the contents of the file register and place the result in
the destination register. The optional WREG operand determines the
destination register. If WREG is specified, the result is stored in WREG. If
WRERG is not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1. The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.

Words: 1
Cycles:
Example 1: IOR.B 0x1000 ; IOR WREG to (0x1000) (Byte mode)
; (Byte mode)
Before After
Instruction Instruction
WREG 1234 WREG 1234
Data 1000 FFOO Data 1000 FF34
SR 0000 SR 0000
Example 2: IOR 0x1000, WREG ; IOR (0x1000) to WREG
; (Word mode)
Before After
Instruction Instruction
WREG 1234 WREG 1FBF
Data 1000 OFAB Data 1000 | OFAB
SR 0008 | (N=1) SR 0000

DS70157B-page 5-128 Prelimin ary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

|OR Inclusive OR Literal and Wn
Syntax: {label:} IOR{.B} #lit10, Wn
Operands: litl0 € [0 ... 255] for byte operation

litl0 € [0 ... 1023] for word operation
Wn e [WO ... W15]

Operation: [it10.10R.(Wn) — Wn

Status Affected: N, Z

Encoding: | 1011 | 0011 0Bkk kkkk kkkk ‘ dddd |
Description: Compute the logical inclusive OR operation of the 10-bit literal operand

and the contents of the working register Wn and place the result back into
the working register Wn.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘K’ bits specify the literal operand.
The ‘d’ bits select the address of the working register.

Note 1. The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: For byte operations, the literal must be specified as an unsigned
value [0:255]. See Section 4.6 “Using 10-bit Literal Oper-
ands” for information on using 10-bit literal operands in Byte

mode.
Words:
Cycles:
Example 1: IOR.B #0xAA, W9 ; IOR OxAA to W9
; (Byte mode)
Before After
Instruction Instruction
W9 1234 W9 | 12BE
SR 0000 SR 0008 | (N =1)
Example 2: IOR #0x2AA, W4 ; IOR O0x2AA to W4
; (Word mode)
Before After
Instruction Instruction
W4 | A34D W4 | A3EF
SR 0000 SR 0008 | (N =1)

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-129

dsPIC30F/33F Programmer’s Reference Manual

IOR

Inclusive OR Wb and Short Literal

Syntax: {label:} IOR{.B} Wh, #it5, wd
[wd]
[Wd++]
(Wd--]
[++Wd]
[--Wd]
Operands: Wb e [WO ... W15]
lits € [0 ... 31]
wd e [WO ... W15]
Operation: (Wb).IOR.Iit5 —» Wd
Status Affected: N, Z
Encoding: 0111 Owww wBaqg gddd dilik ‘ kkkk |
Description: Compute the logical inclusive OR operation of the contents of the base
register Wb and the 5-bit literal operand and place the result in the
destination register Wd. Register direct addressing must be used for Wb.
Either register direct or indirect addressing may be used for Wd.
The ‘W’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the destination register.
The ‘K’ bits provide the literal operand, a five-bit integer number.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words:
Cycles:
Example 1: IOR.B W1, #0x5, [W9++] ; IOR W1 and 0x5 (Byte mode)
; Store to [W9]
; Post-increment W9
Before After
Instruction Instruction
W1 | AAAA W1 | AAAA
w9 2000 w9 2001
Data 2000 0000 Data 2000 | OO0AF
SR 0000 SR 0008 | (N =1)
Example 2: IOR W1, #0x0, W9 ; IOR W1l with 0x0 (Word mode)
; Store to W9
Before After
Instruction Instruction
w1 0000 wi 0000
W9 | A34D w9 0000
SR 0000 SR 0002 | (Z=1)

DS70157B-page 5-130

Preliminary

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

|OR Inclusive OR Wb and Ws

Syntax: {label:} IOR{.B} Wh, Ws, wd
[Ws], [wd]
[Ws++], [Wd++]
[Ws--], (Wd--]
[++Ws], [++wWd]
[--Ws], [--wd]

Operands: Wb e [WO ... W15]

Ws e [WO ... W15]
Wd e [WO ... W15]

Operation: (Wb).IOR.(Ws) — Wd
Status Affected: N, Z

Encoding: 0111 Owww wBgqg gddd dppp ssss

Description: Compute the logical inclusive OR operation of the contents of the source
register Ws and the contents of the base register Wb and place the result in
the destination register Wd. Register direct addressing must be used for Wb.
Either register direct or indirect addressing may be used for Ws and Wd.

The ‘w’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words:
Cycles:

Example 1: IOR.B W1, [W5++], [W9++] ; IOR W1l and [W5] (Byte mode)
; Store result to [W9]
; Post-increment W5 and W9

Before After
Instruction Instruction
W1 | AAAA W1 | AAAA
w5 2000 w5 2001
W9 2400 W9 2401
Data 2000 1155 Data 2000 1155
Data 2400 0000 Data 2400 O0FF
SR 0000 SR 0008 | (N =1)

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-131

dsPIC30F/33F Programmer’s Reference Manual

IOR W1l and W5 (Word mode)

Example 2: IOR W1, W5, W9 ;
Store the result to W9

7

Before After
Instruction Instruction
W1 | AAAA W1 | AAAA
W5 5555 W5 5555
W9 | A34D W9 FFFF
SR 0000 SR 0008 | (N=1)
DS70157B-page 5-132 Prelimin ary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

LAC Load Accumulator

Syntax: {label:} LAC Ws, {#Slit4,} Acc
[Ws],
[Ws++],
[Ws--],
[--Ws],
[++Ws],
[Ws+Wb],

Operands: Ws e [WO ... W15]
Wb e [WO ... W15]
Slit4 € [-8 ... +7]

Acc € [A,B]
Operation: Shiftg)its(Extend(Ws)) — Acc(A or B)
Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: 1100 1010 Awww Wrrr rggg | ssss |
Description: Read the contents of the source register, optionally perform a signed 4-bit

shift and store the result in the specified accumulator. The shift range is -8:7,
where a negative operand indicates an arithmetic left shift and a positive
operand indicates an arithmetic right shift. The data stored in the source
register is assumed to be 1.15 fractional data and is automatically
sign-extended (through bit 39) and zero-backfilled (bits [15:0]), prior to
shifting.

The ‘A’ bit specifies the destination accumulator.
The ‘W’ bits specify the offset register Wh.

The ‘r’ bits encode the accumulator pre-shift.
The ‘g’ bits select the source Address mode.
The ‘s’ bits specify the source register Ws.

Note: If the operation moves more than sign-extension data into the
upper Accumulator register (AccxU), or causes a saturation, the
appropriate overflow and saturation bits will be set.

Words:
Cycles:
; Load ACCB with [W4] << 3

; Contents of [W4] do not change
; Post increment W4

Example 1: LAC [W4++], #-3, B

; Assume saturation disabled

(SATB = 0)
Before After
Instruction Instruction
w4 2000 w4 2002
ACCB| 005125 ABCD ACCB FF 9108 0000
Data 2000 1221 Data 2000 1221
SR 0000 SR 4800 |(OB, OAB =1)

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-133

dsPIC30F/33F Programmer’s Reference Manual

Example 2: LAC [--W2], #7, A ; Pre-decrement W2
; Load ACCA with [W2] >> 7
; Contents of [W2] do not change
; Assume saturation disabled
; (SATA =
Before After
Instruction Instruction
W2 4002 W2 4000
ACCA | 005125 ABCD ACCA FF FF22 1000
Data 4000 9108 Data 4000 9108
Data 4002 1221 Data 4002 1221
SR 0000 SR 0000
DS70157B-page 5-134 Prelimin ary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

L N K Allocate Stack Frame
Syntax: {label:} LNK #lit14
Operands: litl4 € [0 ... 16382]
Operation: (W14) — (TOS)
(W15) + 2 »> W15
(W15) - W14
(W15) + litl4 — W15
Status Affected: None
Encoding: 1111 1010 00kk kkkk kkkk | kkkO0 |
Description: This instruction allocates a Stack Frame of size lit14 bytes for a subrou-

tine calling sequence. The Stack Frame is allocated by PUSHing the con-
tents of the Frame Pointer (W14) onto the stack, storing the updated
Stack Pointer (W15) to the Frame Pointer and then incrementing the
Stack Pointer by the unsigned 14-bit literal operand. This instruction
supports a maximum Stack Frame of 16382 bytes.

The ‘K’ bits specify the size of the Stack Frame.

Note: Since the Stack Pointer can only reside on a word boundary,
litl4 must be even.

Words:
Cycles:
Example 1: LNK #0xA0 ; Allocate a stack frame of 160 bytes
Before After
Instruction Instruction

W14 2000 W14 2002

W15 2000 W15 20A2

Data 2000 0000 Data 2000 2000

SR 0000 SR 0000

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-135

dsPIC30F/33F Programmer’s Reference Manual

LSR Logical Shift Right f

Syntax: {label:} LSR{.B} f {{\WREG}
Operands: fe [0..8191]
Operation: For byte operation:

0 — Dest<7>
(f<7:1>) — Dest<6:0>
(f<0>) > C

For word operation:
0 — Dest<15>
(f<15:1>) — Dest<14:0>
(f<0>) - C

o]

Status Affected: N, Z, C
Encoding: | 1101 | 0101 | OBDf ffff ffff ‘ ffff |

Description: Shift the contents of the file register one bit to the right and place the result
in the destination register. The Least Significant bit of the file register is
shifted into the Carry bit of the STATUS register. Zero is shifted into the
Most Significant bit of the destination register.

The optional WREG operand determines the destination register. If WREG
is specified, the result is stored in WREG. If WREG is not specified, the
result is stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2. The WREG is set to working register WO.

Words: 1
Cycles: 1
Example 1: LSR.B 0x600 ; Logically shift right (0x600) by one
; (Byte mode)
Before After
Instruction Instruction
Data 600 55FF Data 600 557F
SR 0000 SR 0001 | (C=1)
Example 2: LSR 0x600, WREG ; Logically shift right (0x600) by one
; Store to WREG
; (Word mode)
Before After
Instruction Instruction
Data 600 55FF Data 600 55FF
WREG 0000 WREG | 2AFF
SR 0000 SR 0001 | (C=1)

DS70157B-page 5-136

Prelimi nary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

LSR Logical Shift Right Ws
Syntax: {label:} LSR{.B} Ws, wd
[Ws], [Wd]
[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++wWd]
[--Ws], [--wd]
Operands: Ws e [WO ... W15]
wWd e [WO ... W15]
Operation: For byte operation:
0 — Wd<7>
(Ws<7:1>) —» Wd<6:0>
(Ws<0>) » C
For word operation:
0 - Wd<15>
(Ws<15:1>) —» Wd<14:0>
(Ws<0>) - C

o>___

Status Affected: N, Z, C
Encoding: ‘ 1101 ‘ 0001 ‘ 0Bag gddd dppp | ssss ‘
Description: Shift the contents of the source register Ws one bit to the right and place

the result in the destination register Wd. The Least Significant bit of Ws is
shifted into the Carry bit of the STATUS register. Zero is shifted into the
Most Significant bit of Wd. Either register direct or indirect addressing
may be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words:
Cycles:

Example 1: LSR.B WO, W1l ; LSR WO (Byte mode)
; Store result to W1

Before After
Instruction Instruction
WO FFO3 WO FFO3
w1 2378 w1l 2301
SR 0000 SR 0001 | (C=1)

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-137

dsPIC30F/33F Programmer’s Reference Manual

Example 2: LSR WO, W1 ; LSR WO (Word mode)
; Store the result to W1
Before After
Instruction Instruction
WO 8000 WO 8000
W1 2378 W1 4000
SR 0000 SR 0000
Prelimi nary © 2005 Microchip Technology Inc.

DS70157B-page 5-138

Section 5. Instruction Descriptions

LSR Logical Shift Right by Short Literal
Syntax: {label:} LSR Wh, #lit4, Wnd
Operands: Wb e [WO ... W15]

litd € [0 ... 15]

Wnd € [WO ... W15]
Operation: lit4<3:0> — Shift_Val

0 — Wnd<15:15-Shift_Val + 1>
Whb<15:Shift_Val> — Wnd<15-Shift_Val:0>

Status Affected: N, Z
Encoding: ‘ 1101 | 1110 Owww wddd 4100 | Kkkk ‘
Description: Logical shift right the contents of the source register Wb by the 4-bit

unsigned literal and store the result in the destination register Wnd.
Direct addressing must be used for Wb and Wnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the destination register.
The ‘K’ bits provide the literal operand.

Note: This instruction operates in Word mode only.

Words: 1
Cycles:
Example 1: LSR W4, #14, WS ; LSR W4 by 14
; Store result to W5
Before After
Instruction Instruction
W4 C800 W4 C800
W5 1200 W5 0003
SR 0000 SR 0000
Example 2: LSR W4, #1, W5 ; LSR W4 by 1
; Store result to W5
Before After
Instruction Instruction
W4 0505 W4 0505
W5 FO00 W5 0282
SR 0000 SR 0000

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-139

dsPIC30F/33F Programmer’s Reference Manual

LSR

Logical Shift Right by Wns

Syntax: {label:} LSR Wh, Whns, Wnd
Operands: Wb € [WO ... W15]
Wns e [WO ...W15]
Wnd e [WO ... W15]
Operation: Wns<4:0> — Shift_Val
0 — Wnd<15:15-Shift_Val + 1>
Wb<15:Shift_Val> — Wnd<15 - Shift_Val:0>
Status Affected: N, Z
Encoding: | 1101 ‘ 1110 Owww wddd dooo ‘ ssss |
Description: Logical shift right the contents of the source register Wh by the 5 Least
Significant bits of Wns (only up to 15 positions) and store the result in the
destination register Wnd. Direct addressing must be used for Wb and
Wnd.
The ‘w’ bits select the address of the base register.
The ‘d’ bits select the destination register.
The ‘s’ bits select the source register.
Note 1: This instruction operates in Word mode only.
2: If Wns is greater than 15, Wnd will be loaded with 0x0.
Words:
Cycles:
Example 1: LSR WO, W1, W2 ; LSR WO by W1
; Store result to W2
Before After
Instruction Instruction
W0 | Co0C W0 | Co0C
w1 0001 wi 0001
w2 2390 w2 6006
SR 0000 SR 0000
Example 2: LSR W5, W4, W3 ; LSR W5 by W4
; Store result to W3
Before After
Instruction Instruction
W3 | DD43 w3 0000
W4 | 000C W4 | 000C
w5 0800 W5 0800
SR 0000 SR 0002 | (Z2=1)
DS70157B-page 5-140 Prelimin ary © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

MAC Multiply and Accumulate

Syntax: {label:} MAC Wm*Wn, Acc {,[Wx], Wxd} {,[Wy], Wyd} {,AWB}
{,[Wx] + = kx, Wxd} {,[Wy] + = ky, Wyd}
{,[Wx] — = kx, Wxd}{,[Wy] — = ky, Wyd}
{,IW9 + W12], Wxd} {,[W11 + W12], Wyd}

Operands: Wm * Wn e [W4 * W5, W4 * W6, W4 * W7, W5 * W6, W5 * W7, W6 * W7]
Acc € [A,B]
Wx e [W8, W9J; kx € [-6, -4, -2, 2, 4, 6]; Wxd € [W4 ... W7]
Wy e [W10, W11]; ky € [-6, -4, -2, 2, 4, 6]; Wyd € [W4 ... W7]
AWB e [W13, [W13] + = 2]
Operation: (Acc(A or B)) + (Wm) * (Wn) — Acc(A or B)
([Wx]) = Wxd; (Wx) + kx — Wx

(Iwy]) — Wyd; (Wy) + ky — Wy
(Acc(B or A)) rounded —» AWB

Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: ‘ 1100 ‘ Ommm AOXX yyii iijj | jjaa |
Description: Multiply the contents of two working registers, optionally prefetch

operands in preparation for another MAC type instruction and optionally
store the unspecified accumulator results. The 32-bit result of the signed
multiply is sign-extended to 40 bits and added to the specified
accumulator.

Operands Wx, Wxd, Wy and Wyd specify optional prefetch operations,
which support indirect and register offset addressing, as described in
Section 4.14.1 “MAC Prefetches”. Operand AWB specifies the optional
store of the “other” accumulator, as described in

Section 4.14.4 “MAC Write Back”.

The ‘m’ bits select the operand registers Wm and Wn for the multiply.
The ‘A’ bit selects the accumulator for the result.

The ‘X’ bits select the prefetch Wxd destination.

The 'y’ bits select the prefetch Wyd destination.

The ‘i’ bits select the Wx prefetch operation.

The ' bits select the Wy prefetch operation.

The ‘a’ bits select the accumulator Write Back destination.

Note: The IF bit, CORCON<0>, determines if the multiply is
fractional or an integer.

Words:
Cycles:

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-141

dsPIC30F/33F Programmer’s Reference Manual

Example 1. MAC W4*W5, A, [W8]+=6, W4, [W10]+=2, W5
; Multiply W4*W5 and add to ACCA
; Fetch [W8] to W4, Post-increment W8 by 6
; Fetch [W10] to W5, Post-increment W10 by 2
; CORCON = 0x00CO (fractional multiply, normal saturation)
Before After
Instruction Instruction
w4 A022 w4 2567
W5 B900 W5 909C
w8 0AO00 w8 0A06
W10 1800 W10 1802
ACCA 00 1200 0000 ACCA 00 472D 2400
Data 0A00 2567 Data 0A00 2567
Data 1800 909C Data 1800 909C
CORCON 00CO CORCON 00CO
SR 0000 SR 0000
Example 2: MAC W4*W5, A, [W8]-=2, W4, [W10]+=2, W5, W13
; Multiply W4*W5 and add to ACCA
; Fetch [W8] to W4, Post-decrement W8 by 2
; Fetch [W10] to W5, Post-increment W10 by 2
; Write Back ACCB to W13
; CORCON = 0x00D0 (fractional multiply, super saturation)
Before After
Instruction Instruction
w4 1000 W4 5BBE
W5 3000 W5 Co67
W8 0A00 W8 09FE
W10 1800 W10 1802
W13 2000 W13 0001
ACCA 23 5000 2000 ACCA 23 5600 2000
ACCB 00 0000 8F4C ACCB 00 0000 1F4C
Data 0A00 5BBE Data 0A00 5BBE
Data 1800 Cc967 Data 1800 C967
CORCON 00DO0 CORCON 00DO
SR 0000 SR 8800 |(OA, OAB =1)

DS70157B-page 5-142

Preliminary

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

MAC Square and Accumulate

Syntax: {label:’} MAC ~ Wm*Wm, Acc {,[Wx], Wxd} {,[Wy], Wyd}
{,[Wx] + = kx, Wxd} {,[Wy] + = ky, Wyd}
{.IWx] — = kx, Wxd} {,[Wy] - = ky, Wyd}
{.Iw9 + W12], Wxd} {,[W1l + W12], Wyd}

Operands: Wm * Wm e [W4 * W4, W5 * W5, W6 * W6, W7 * W7]
Acc € [AB]
Wx e [W8, W9J; kx € [-6, -4, -2, 2, 4, 6]; Wxd € [W4 ... W7]
Wy e [W10, W11]; ky € [-6, -4, -2, 2, 4, 6]; Wyd € [W4 ... W7]
Operation: (Acc(A or B)) + (Wm) * (Wm) — Acc(A or B)
([Wx]) = Wxd; (Wx) + kx — Wx
(Iwy]) — Wyd; (Wy) + ky — Wy
Status Affected: OA, OB, OAB, SA, SB, SAB

Encoding: | 1111 ‘ 00mm AOxX yyii iijj ‘ jjoo ‘

Description: Square the contents of a working register, optionally prefetch operands in
preparation for another MAC type instruction and optionally store the
unspecified accumulator results. The 32-bit result of the signed multiply is
sign-extended to 40 bits and added to the specified accumulator.

Operands Wx, Wxd, Wy and Wyd specify optional prefetch operations,
which support indirect and register offset addressing, as described in
Section 4.14.1 “MAC Prefetches”.

The ‘m’ bits select the operand register Wm for the square.
The ‘A’ bit selects the accumulator for the result.

The ‘X’ bits select the prefetch Wxd destination.

The 'y’ bits select the prefetch Wyd destination.

The ‘i’ bits select the Wx prefetch operation.

The ' bits select the Wy prefetch operation.

Note: The IF bit, CORCON<0>, determines if the multiply is fractional
or an integer.

Words:
Cycles: 1

)
M
0
)
=
i=l
=
o
>
n

© 2005 Microchip Technology Inc. Prelimin ary DS70157B-page 5-143

dsPIC30F/33F Programmer’s Reference Manual

saturation)

Example 1: MAC W4*W4, B, [W9+W1l2], W4, [W1l0]-=2, W5
; Square W4 and add to ACCB
; Fetch [W9+W12] to W4
; Fetch [W10] to W5, Post-decrement W10 by 2
; CORCON = 0x00CO (fractional multiply, normal
Before After
Instruction Instruction
W4 A022 W4 A230
W5 B200 W5 650B
W9 0CO00 W9 0CO00
W10 1900 W10 18FE
W12 0020 W12 0020
ACCB 00 2000 0000 ACCB 00 67CD 0908
Data 0C20 A230 Data 0C20 A230
Data 1900 650B Data 1900 650B
CORCON 00CO CORCON 00CO
SR 0000 SR 0000
Example 2: MAC W7*W7, A, [W1l]-=2, W7
; Square W7 and add to ACCA
; Fetch [W1l] to W7, Post-decrement W1l by 2
; CORCON = 0x00D0 (fractional multiply,
Before After
Instruction Instruction
W7 76AE W7 23FF
W11 2000 W11 1FFE
ACCA FE 9834 4500 ACCA FF 063E 0188
Data 2000 23FF Data 2000 23FF
CORCON 00DO0 CORCON 00DO
SR 0000 SR 8800

super saturation)

(OA, OAB = 1)

DS70157B-page 5-144

Preliminary

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

MOV Move f to Destination

Syntax: {label:} MOV{.B} f {{WREG}

Operands: fe[0...8191]

Operation: (f) — destination designated by D

Status Affected: N, Z

Encoding: 1011 1111 1BDf ffff ffff ‘ ffff ‘
Description: Move the contents of the specified file register to the destination register.

The optional WREG operand determines the destination register. If
WREG is specified, the result is stored in WREG. If WREG is not
specified, the result is stored back to the file register and the only effect is
to modify the STATUS register.

The ‘B’ bit selects byte or word ope