
Micromega Corporation 1 Revised 2008-02-28

uM-FPU V3.1

Instruction Set

32-bit Floating Point Coprocessor

Introduction
The uM-FPU V3.1 floating point coprocessor provides instructions for working with 32-bit IEEE 754 compatible

floating point numbers and 32-bit long integer. A typical calculation involves sending instructions and data from the

microcontroller to the uM-FPU, performing the calculation, and transferring the result back to the microcontroller.

Microcontroller
uM-FPU

V3.1

Read results

Perform calculations

Send data and

instructions

Instructions and data are sent to the uM-FPU using either a SPI or I2C interface. The uM-FPU V3.1 chip has a 256

byte instruction buffer which allows for multiple instructions to sent. This improves the transfer times and allows the

microcontroller to perform other tasks while the uM-FPU is performing a series of calculations. Prior to issuing any

instruction that reads data from the uM-FPU, the Busy/Ready status must be checked to ensure that all instructions

have been executed. If more than 256 bytes are required to specify a sequence of operations, the Busy/Ready status

must be checked at least every 256 bytes to ensure that the instruction buffer does not overflow. See the datasheet for

more detail regarding the SPI or I2C interfaces.

Instructions consist of an single opcode byte, optionally followed by addition data bytes. A detailed description of

each instruction is provided later in this document, and a summary table is provided in Appendix A.

 For instruction timing, see Appendix B of the uM-FPU V3.1 Datasheet.

Micromega Corporation 2 uM-FPU V3.1 Instruction Set

Micromega Corporation 3 uM-FPU V3.1 Instruction Set

uM-FPU Registers
The uM-FPU V3.1 contains 128 general purpose registers, and 8 temporary registers. All registers are 32-bits and

can be used to store either floating point or long integer values. The general purpose registers are numbered 0 to 127,

and can be directly accessed by the instruction set. The eight temporary registers are used by the LEFT and RIGHT

parenthesis instructions to store temporary results and can’t be accessed directly. Register 0 is normally only used to

store temporary values, since it is modified by many instructions.

Temporary Registers

32-bit Register

32-bit Register

32-bit Register

32-bit Register

•

•

•

32-bit Register

Register A

Register X

0

1

2

3

127

•

•

•

32-bit Register

•

•

•

32-bit Register

T1

T8

•

•

•

General Registers

Register A

To perform arithmetic operations, one of the uM-FPU registers is selected as register A. Register A can be regarded

as the accumulator or working register. Arithmetic instructions use the value in register A as an operand and store the

results of an operation in register A. Any register can be selected as register A using the SELECTA instruction. For

example,

SELECTA,5 select register 5 as register A

Arithmetic instructions that only involve one register implicitly refer to register A. For example,

FNEG negate the value in register A

Arithmetic instructions that use two registers will specify the second register as part of the instruction. For example,

FADD,4 add the value of register 4 to register A

Micromega Corporation 2 uM-FPU V3.1 Instruction Set

Micromega Corporation 3 uM-FPU V3.1 Instruction Set

Micromega Corporation 4 uM-FPU V3.1 Instruction Set

Register X

Register X is used to reference a series of sequential registers. The register X selection is automatically incremented

to the next register in sequence by all instructions that use register X. Any register can be selected as register X

using the SELECTX instruction. For example,

SELECTX,16 select register 16 as register X

CLRX clear register 16 (and increment register X)

CLRX clear register 17 (and increment register X)

CLRX clear register 18 (and increment register X)

Another example would be to use the FWRITEX and READX instructions to store and retrieve blocks of data.

In this document the following abbreviations are used to refer to registers:

reg[0] register 0

reg[A] register A

reg[X] register X

reg[nn] any one of the 128 general purpose registers

Micromega Corporation 3 uM-FPU V3.1 Instruction Set

Micromega Corporation 4 uM-FPU V3.1 Instruction Set

Micromega Corporation 5 uM-FPU V3.1 Instruction Set

Floating Point Instructions
The following descriptions provide a quick summary of the floating point instructions. Detailed descriptions are

provided in the next section.

Basic Floating Point Instructions

Each of the basic floating point arithmetic instructions are provided in three different forms as shown in the table

below. The FADD instruction will be used as an example to describe the three different forms of the instructions. The

FADD,nn instruction allows any general purpose register to be added to register A. The register to be added to

register A is specified by the byte following the opcode. The FADD0 instruction adds register 0 to register A and only

requires the opcode. The FADDB instruction adds a small integer value the register A. The signed byte (-128 to 127)

following the opcode is converted to floating point and added to register A. The FADD,nn instruction is most

general, but the FADD0 and FADDI,bb instructions are more efficient for many common operations.

Loading Floating Point Values

The following instructions are used to load data from the microprocessor and store it on the uM-FPU as 32-bit

floating point values.

FWRITE,nn,b1,b2,b3,b4 Write 32-bit floating point value to reg[nn]

FWRITEA,b1,b2,b3,b4 Write 32-bit floating point value to reg[A]

FWRITEX,b1,b2,b3,b4 Write 32-bit floating point value to reg[X]

FWRITE0,b1,b2,b3,b4 Write 32-bit floating point value to reg[0]

WRBLK, tc, t1…tn Write multiple 32-bit values

ATOF,aa…00 Convert ASCII string to floating point value and store in reg[0]

LOADBYTE,bb Convert signed byte to floating point and store in reg[0]

LOADUBYTE,bb Convert unsigned byte to floating point and store in reg[0]

LOADWORD,b1,b2 Convert signed 16-bit value to floating point and store in reg[0]

LOADUWORD,b1,b2 Convert unsigned 16-bit value to floating point and store in reg[0]

LOADUWORD,b1,b2 Convert unsigned 16-bit value to floating point and store in reg[0]

LOADE Load the value of e (2.7182818) to reg[0]

LOADPI Load the value of pi (3.1415927) to reg[0]

Register nn

FSET,nn

FADD,nn

FSUB,nn

FSUBR,nn

FMUL,nn

FDIV,nn

FDIVR,nn

FPOW,nn

FCMP,nn

Register 0

FSET0

FADD0

FSUB0

FSUBR0

FMUL0

FDIV0

FDIVR0

FPOW0

FCMP0

Immediate value

FSETI,bb

FADDI,bb

FSUBI,bb

FSUBRI,bb

FMULI,bb

FDIVI,bb

FDIVRI,bb

FPOWI,bb

FCMPI,bb

Description

Set

Add

Subtract

Subtract Reverse

Multiply

Divide

Divide Reverse

Power

Compare

Micromega Corporation 4 uM-FPU V3.1 Instruction Set

Micromega Corporation 5 uM-FPU V3.1 Instruction Set

Micromega Corporation 6 uM-FPU V3.1 Instruction Set

Reading Floating Point Values

The following instructions are used to read floating point values from the uM-FPU.

FREAD,nn [b1,b2,b3,b4] Return 32-bit floating point value from reg[nn]

FREADA [b1,b2,b3,b4] Return 32-bit floating point value from reg[A]

FREADX [b1,b2,b3,b4] Return 32-bit floating point value from reg[X]

FREAD0 [b1,b2,b3,b4] Return 32-bit floating point value from reg[0]

RDBLK,tc [t1…tn] Read multiple 32-bit values

FTOA,bb Convert floating point to ASCII string (use READSTR to read string)

Additional Floating Point Instructions

Matrix Instructions

SELECTMA,nn,b1,b2 select matrix A at register nn of size b1 rows x b2 columns

SELECTMB,nn,b1,b2 select matrix B at register nn of size b1 rows x b2 columns

SELECTMC,nn,b1,b2 select matrix C at register nn of size b1 rows x b2 columns

LOADMA,b1,b2 load reg[0] with value from matrix A row b1, column b2

LOADMB,b1,b2 load reg[0] with value from matrix B row b1, column b2

LOADMC,b1,b2 load reg[0] with value from matrix C r row b1, column b2

SAVEMA,b1,b2 store reg[A] value to matrix A row b1, column b2

SAVEMB,b1,b2 store reg[A] value to matrix A row b1, column b2

SAVEMC,b1,b2 store reg[A] value to matrix A row b1, column b2

MOP,bb perform matrix operation

Fast Fourier Transform Instruction

FFT perform Fast Fourier Transform operation

Conversion Instructions

FLOAT convert reg[A] from long integer to floating point

FIX convert reg[A] from floating point to long integer

FIXR convert reg[A] from floating point to long integer (with rounding)

FSPLIT reg[A] = integer value, reg[0] = fractional value

FSTATUS,nn

FSTATUSA

FCMP2,nn,mm

FNEG

FABS

FINV

SQRT

ROOT,nn

LOG

LOG10

EXP

EXP10

SIN

COS

TAN

ASIN

ACOS

ATAN

ATAN2,nn

DEGREES

RADIANS

FMOD

FLOOR

CEIL

ROUND

FMIN,nn

FMAX,nn

FCNV,bb

FMAC,nn,mm

FMSC,nn,mm

FRACTION

Micromega Corporation 5 uM-FPU V3.1 Instruction Set

Micromega Corporation 6 uM-FPU V3.1 Instruction Set

Micromega Corporation 7 uM-FPU V3.1 Instruction Set

Long Integer Instructions
The following descriptions provide a quick summary of the long integer instructions. Detailed descriptions are

provided in the next section.

Basic Long Integer Instructions

Each of the basic long integer arithmetic instructions are provided in three different forms as shown in the table

below. The LADD instruction will be used as an example to descibe the three different forms of the instructions. The

LADD,nn instruction allows any general purpose register to be added to register A. The register to be added to

register A is specified by the byte following the opcode. The LADD0 instruction adds register 0 to register A and only

requires the opcode. The LADDB instruction adds a small integer value the register A. The signed byte (-128 to 127)

following the opcode is converted to a long integer and added to register A. The LADD,nn instruction is most

general, but the LADD0 and LADDB,bb instructions are more efficient for many common operations.

Loading Long Integer Values

The following instructions are used to load data from the microprocessor and store it on the uM-FPU as 32-bit long

integer values.

LWRITE,nn,b1,b2,b3,b4 Write 32-bit long integer value to reg[nn]

LWRITEA,b1,b2,b3,b4 Write 32-bit long integer value to reg[A]

LWRITEX,b1,b2,b3,b4 Write 32-bit long integer value to reg[X]

LWRITE0,b1,b2,b3,b4 Write 32-bit long integer value to reg[0]

WRBLK, tc, t1…tn Write multiple 32-bit values

ATOL,aa…00 Convert ASCII string to long integer value and store in reg[0]

LONGBYTE,bb Convert signed byte to long integer and store in reg[0]

LONGUBYTE,bb Convert unsigned byte to long integer and store in reg[0]

LONGWORD,b1,b2 Convert signed 16-bit value to long integer and store in reg[0]

LONGUWORD,b1,b2 Convert unsigned 16-bit value to long integer and store in reg[0]

Register nn

LSET,nn

LADD,nn

LSUB,nn

LMUL,nn

LDIV,nn

LCMP,nn

LUDIV,nn

LUCMP,nn

LTST,nn

Register 0

LSET0

LADD0

LSUB0

LMUL0

LDIV0

LCMP0

LUDIV0

LUCMP0

LTST0

Immediate value

LSETI,bb

LADDI,bb

LSUBI,bb

LMULI,bb

LDIVI,bb

LCMPI,bb

LUDIVI,bb

LUCMPI,bb

LTSTI,bb

Description

Set

Add

Subtract

Multiply

Divide

Compare

Unsigned Divide

Unsigned Compare

Test Bits

Micromega Corporation 6 uM-FPU V3.1 Instruction Set

Micromega Corporation 7 uM-FPU V3.1 Instruction Set

Micromega Corporation 8 uM-FPU V3.1 Instruction Set

Reading Long Integer Values

The following instructions are used to read long integer values from the uM-FPU.

LREAD,nn [b1,b2,b3,b4] returns 32-bit long integer value from reg[nn]

LREADA [b1,b2,b3,b4] returns 32-bit long integer value from reg[A]

LREADX [b1,b2,b3,b4] returns 32-bit long integer value from reg[X]

LREAD0 [b1,b2,b3,b4] returns 32-bit long integer value from reg[0]

RDBLK,tc [t1…tn] Read multiple 32-bit values

LREADBYTE [b1] returns 8-bit byte from reg[A]

LREADWORD [b1,b2] returns 16-bit value from reg[A]

LTOA,bb convert long integer to ASCII string (use READSTR to read string)

Additional Long Integer Instructions

LSTATUS,nn

LSTATUSA

LCMP2,nn,mm

LUCMP2,nn,mm

LNEG

LABS

LINC,nn

LDEC,nn

LNOT

LAND,nn

LOR,nn

LXOR,nn

LSHIFT,nn

LMIN,nn

LMAX,nn

Micromega Corporation 7 uM-FPU V3.1 Instruction Set

Micromega Corporation 8 uM-FPU V3.1 Instruction Set

Micromega Corporation 9 uM-FPU V3.1 Instruction Set

General Purpose Instructions

Special Purpose Instructions

Stored Function Instructions

FCALL,fn Call Flash user-defined function

EECALL,fn Call EPROM user-defined function

RET Return from user-defined function

RET,cc Conditional return from user-defined function

BRA,bb Unconditional branch inside user-defined function

BRA,cc,bb Conditional branch inside user-defined function

JMP,b1,b2 Unconditional jump inside user-defined function

JMP,cc,b1,b2 Conditional jump inside user-defined function

GOTO,nn Computed goto

TABLE,tc,t1…tn Table lookup

FTABLE,cc,tc,t1…tn Floating point reverse table lookup

LTABLE,cc,tc,t1…tn Long integer reverse table lookup

POLY,tc,t1…tn Nth order polynomial

Analog to Digital Conversion Instructions

ADCMODE,bb Select A/D trigger mode

ADCTRIG Manual A/D trigger

ADCSCALE,bb Set A/D floating point scale factor

ADCLONG,bb Get raw long integer A/D reading

ADCLOAD,bb Get scaled floating point A/D reading

ADCWAIT Wait for A/D conversion to complete

Timer Instructions

TIMESET Set timers

TIMELONG Get time in seconds

TICKLONG Get time in milliseconds

EEPROM Instructions

EESAVE,mm,nn Save reg[nn] value to EEPROM

EESAVEA,nn Save reg[A] to EEPROM

EELOAD,mm,nn Load reg[nn] with EEPROM value

EELOADA,nn Load reg[A] with EEPROM value

EEWRITE,nn,bc,b1..bn Write byte string to EEPROM

RESET

NOP

SELECTA,nn

SELECTX,nn

CLR,nn

CLRA

CLRX

COPY,mm,nn

COPY0,nn

COPYI,bb,nn

COPYA,nn

COPYX,nn

LOAD,nn

LOADA

LOADX

ALOADX

XSAVE,nn

XSAVEA

LOADIND,nn

SAVEIND,nn

INDA

INDX

SWAP,nn,mm

SWAPA,nn

LEFT

RIGHT

SETOUT,bb

SYNC

READSTATUS

READSTR

VERSION

IEEEMODE

PICMODE

CHECKSUM

READVAR,bb

SETSTATUS,bb

Micromega Corporation 8 uM-FPU V3.1 Instruction Set

Micromega Corporation 9 uM-FPU V3.1 Instruction Set

Micromega Corporation 10 uM-FPU V3.1 Instruction Set

External Input Instructions

EXTSET Set external input counter

EXTLONG Get external input counter

EXTWAIT Wait for next external input pulse

String Manipulation Instructions

STRSET,aa…00 Copy string to string buffer

STRSEL,bb,bb Set string selection point

STRINC Increment string selection point

STRDEC Decrement string selection point

STRINS,aa…00 Insert string at selection point

STRBYTE Insert byte at selection point

STRCMP,aa…00 Compare string with string selection

STRFIND,aa…00 Find string

STRFCHR,aa…00 Set field delimiters

STRFIELD,bb Find field

STRTOF Convert string selection to floating point

STRTOL Convert string selection to long integer

FTOA,bb Convert floating point value to string

LTOA,bb Convert long integer value to string

READSTR Read entire string buffer

READSEL Read string selection

Serial Input/Output

SEROUT,bb Serial Output

SEROUT,bb,bd Serial Output

SEROUT,bb,aa…00 Serial Output

SERIN,bb Serial Input

Debugging Instructions

BREAK Debug breakpoint

TRACEOFF Turn debug trace off

TRACEON Turn debug trace on

TRACESTR,aa…00 Display string in debug trace

TRACEREG,nn Display contents of register in debug trace

Micromega Corporation 9 uM-FPU V3.1 Instruction Set

Micromega Corporation 10 uM-FPU V3.1 Instruction Set

Micromega Corporation 11 uM-FPU V3.1 Instruction Set

Test Conditions
Several of the stored function instructions use a test condition byte. The test condition is an 8-bit byte that defines

the expected state of the internal status byte. The upper nibble is used as a mask to determine which status bits to

check. A status bit will only be checked if the corresponding mask bit is set to 1. The lower nibble specifies the

expected value for each of the corresponding status bits in the internal status byte. A test condition is considered to

be true if all of the masked test bits have the same value as the corresponding bits in the internal status byte. There

are two special cases: 0x60 evaluates as greater than or equal, and 0x62 evaluates as less than or equal.

Mask I S

7 6 5 4 3 2 1 0Bit

N Z

Bits 4-7 Mask bits

Bit 7 Mask bit for Infinity

Bit 6 Mask bit for NaN

Bit 5 Mask bit for Sign

Bit 4 Mask bit for Zero

Bits 0-3 Test bits

Bit 3 Expected state of Infinity status bit

Bit 2 Expected state of NaN status bit

Bit 1 Expected state of Sign status bit

Bit 0 Expected state of Zero status bit

The uM-FPU V3 IDE assembler has built-in symbols for the most common test conditions. They are as follows:

Assembler Symbol Test Condition Description

Z 0x51 Zero

EQ 0x51 Equal

NZ 0x50 Not Zero

NE 0x50 Not Equal

LT 0x72 Less Than

LE 0x62 Less Than or Equal

GT 0x70 Greater Than

GE 0x60 Greater Than or Equal

PZ 0x71 Positive Zero

MZ 0x73 Negative Zero

INF 0xC8 Infinity

FIN 0xC0 Finite

PINF 0xE8 Positive Infinity

MINF 0xEA Minus infinity

NAN 0x44 Not-a-Number (NaN)

TRUE 0x00 True

FALSE 0xFF False

Micromega Corporation 10 uM-FPU V3.1 Instruction Set

Micromega Corporation 11 uM-FPU V3.1 Instruction Set

Micromega Corporation 12 uM-FPU V3.1 Instruction Set

uM-FPU V3.1 Instruction Reference

ACOS Arc Cosine
Opcode: 4B

Description: reg[A] = acos(reg[A])

Calculates the arc cosine of an angle in the range 0.0 through pi. The initial value is contained in

register A, and the result is returned in register A.

Special Cases: • if reg[A] is NaN or its absolute value is greater than 1, then the result is NaN

ADCLOAD Load scaled A/D value

Opcode: D5 nn where: nn is the A/D channel number

Description: reg[0] = float(ADCchannel[nn]) * ADCscale[nn])

Wait until the A/D conversion is complete, then load register 0 with the reading from channel nn

of the A/D converter. The 12-bit value is converted to floating point, multiplied by a scale value,

and stored in register 0. The instruction buffer should be empty when this instruction is executed.

If there are other instructions in the instruction buffer, or another instruction is sent before the

ADCLOAD instruction has been completed, the wait will terminate and the previous value for the

selected channel will be used.

ADCLONG Load raw A/D value
Opcode: D4 nn where: nn is the A/D channel number

Description: reg[0] = ADCchannel[nn]

Wait until the A/D conversion is complete, then load register 0 with the reading from channel nn

of the A/D converter. The 12-bit value is converted to a long integer and stored in register 0. The

instruction buffer should be empty when this instruction is executed. If there are other instructions

in the instruction buffer, or another instruction is sent before the ADCLONG instruction has been

completed, the wait will terminate and the previous value for the selected channel will be used.

ADCMODE Set A/D trigger mode
Opcode: D1 nn where: nn is the trigger mode

Description: Set the trigger mode of the A/D converter. The value nn is interpreted as follows:

Trigger

7 6 5 4 3 2 1 0Bit

Repeat

Bits 4-7 Trigger Type (high nibble)

0 - disable A/D conversions

1 - manual trigger

2 - external input trigger

3 - timer trigger, the value in register 0 specifies the period in microseconds

(the minimum period is 100 microseconds)

Bits 0-3 Repeat Count (low nibble)

The number of samples taken for each trigger is equal to the repeat count plus one.

(e.g. a value of 0 will result in one sample per trigger)

Micromega Corporation 11 uM-FPU V3.1 Instruction Set

Micromega Corporation 12 uM-FPU V3.1 Instruction Set

Micromega Corporation 13 uM-FPU V3.1 Instruction Set

Examples: ADCMODE,0x10 set manual trigger with 1 sample per trigger

ADCMODE,0x24 set external trigger with 5 samples per trigger

LOADWORD,1000 set timer trigger every 1000 usec, with 1 sample per trigger

ADCMODE,0x30

ADCMODE,0 disable A/D conversions

ADCSCALE Set scale multiplier for A/D

Opcode: D3 nn where: nn is the A/D channel number

Description: ADCscale[nn] = reg[0]

Set the scale value for channel nn to the floating point value in register 0. The scale value for all

channels is set to 1.0 at device reset or when the ADCMODE mode is set to disable A/D

conversions.

ADCTRIG Trigger an A/D conversion
Opcode: D2

Description: Trigger an A/D conversion. If a conversion is already in progress the trigger is ignored. This is

normally used only when the ADCMODE is set for manual trigger.

ADCWAIT Wait for next A/D sample

Opcode: D6

Description: Wait until the next A/D sample is ready. When ADCMODE is set for manual trigger, this instruction

can be used to wait until the conversion started by the last ADCTRIG is done. ADCLONG and

ADCLOAD automatically wait until the next sample is ready. If the ADCMODE is set for timer

trigger or external input trigger, this instruction will wait until the next full conversion is

completed. The instruction buffer should be empty when this instruction is executed. If there are

other instructions in the instruction buffer, or another instruction is sent before the ADCWAIT

instruction has been completed, the wait will terminate.

ALOADX Load register A from register X

Opcode: 0D nn where: nn is a register number

Description: reg[A] = reg[X] , X = X + 1

Set register A to the value of register X, and increment X to select the next register in sequence.

Special Cases: • the X register will not increment past the maximum register value of 127

ASIN Arc Sine
Opcode: 4A

Description: reg[A] = asin(reg[A])

Calculates the arc sine of an angle in the range of –pi/2 through pi/2. The initial value is contained

Micromega Corporation 12 uM-FPU V3.1 Instruction Set

Micromega Corporation 13 uM-FPU V3.1 Instruction Set

Micromega Corporation 14 uM-FPU V3.1 Instruction Set

in register A, and the result in returned in register A.

Special Cases: • if reg[A] is NaN or its absolute value is greater than 1, then the result is NaN

• if reg[A] is 0.0, then the result is a 0.0

• if reg[A] is –0.0, then the result is –0.0

ATAN Arc Tangent
Opcode: 4C

Description: reg[A] = atan(reg[A])

Calculates the arc tangent of an angle in the range of –pi/2 through pi/2. The initial value is

contained in register A, and the result in returned in register A.

Special Cases: • if reg[A] is NaN, then the result is NaN

• if reg[A] is 0.0, then the result is a 0.0

• if reg[A] is –0.0, then the result is –0.0

ATAN2 Arc Tangent (two arguments)
Opcode: 4D nn where: nn is a register number

Description: reg[A] = atan(reg[A] / reg[nn])

Calculates the arc tangent of an angle in the range of –pi/2 through pi/2. The initial value is

determined by dividing the value in register A by the value in register nn, and the result in

returned in register A. This instruction is used to convert rectangular coordinates (reg[A], reg[nn])

to polar coordinates (r, theta). The value of theta is returned in register A.

Special Cases: • if reg[A] or reg[nn] is NaN, then the result is NaN

• if reg[A] is 0.0 and reg[nn] > 0, then the result is 0.0

• if reg[A] > 0 and finite, and reg[nn] is +inf, then the result is 0.0

• if reg[A] is –0.0 and reg[nn] > 0, then the result is –0.0

• if reg[A] < 0 and finite, and reg[nn] is +inf, then the result is –0.0

• if reg[A] is 0.0 and reg[nn] < 0, then the result is pi

• if reg[A] > 0 and finite, and reg[nn] is –inf, then the result is pi

• if reg[A] is –0.0, and reg[nn] < 0, then the result is –pi

• if reg[A] < 0 and finite, and reg[nn] is –inf, then the result is –pi

• if reg[A] > 0, and reg[nn] is 0.0 or –0.0, then the result is pi/2

• if reg[A] is +inf, and reg[nn] is finite, then the result is pi/2

• if reg[A] < 0, and reg[nn] is 0.0 or –0.0, then the result is –pi/2

• if reg[A] is –inf, and reg[nn] is finite, then the result is –pi/2

• if reg[A] is +inf, and reg[nn] is +inf, then the result is pi/4

• if reg[A] is +inf, and reg[nn] is –inf, then the result is 3*pi/4

• if reg[A] is –inf, and reg[nn] is +inf, then the result is –pi/4

• if reg[A] is –inf, and reg[nn] is –inf, then the result is –3*pi/4

ATOF Convert ASCII string to floating point
Opcode: 1E aa…00 where: aa…00 is a zero-terminated ASCII string

Description: Converts a zero terminated ASCII string to a 32-bit floating point number and stores the result in

register 0. The string to convert is sent immediately following the opcode. The string can be

Micromega Corporation 13 uM-FPU V3.1 Instruction Set

Micromega Corporation 14 uM-FPU V3.1 Instruction Set

Micromega Corporation 15 uM-FPU V3.1 Instruction Set

normal number format (e.g. 1.56, -0.5) or exponential format (e.g. 10E6). Conversion will stop at

the first invalid character, but data will continue to be read until a zero terminator is encountered.

Examples: 1E 32 2E 35 34 00 (string 2.54) stores the value 2.54 in register 0

1E 31 46 33 00 (string 1E3) stores the value 1000.0 in register 0

ATOL Convert ASCII string to long integer
Opcode: 9A aa…00 where: aa...00 is a zero-terminated ASCII string

Description: Converts a zero terminated ASCII string to a 32-bit long integer and stores the result in register 0.

The string to convert is sent immediately following the opcode. Conversion will stop at the first

invalid character, but data will continue to be read until a zero terminator is encountered.

Examples: 9A 35 30 30 30 30 30 00 (string 500000) stores the value 500000 in register 0

9A 2D 35 00 (string -5) stores the value -5 in register 0

BRA Unconditional branch

Opcode: 81 bb where: bb is the relative address in bytes (-128 to +127)

Description: This instruction is only valid in a user-defined function in Flash memory or EEPROM memory.

Function execution will continue at the address determined by adding the signed byte value to the

address of the byte immediately following the instruction. It has a range of -128 to 127 bytes. The

JMP instruction can be used for addresses that are outside this range. If the new address is outside

the address range of the function, a function return occurs.

BRA,cc Conditional branch

Opcode: 82 cc, bb where: cc is the test condition

bb is the relative address in bytes (-128 to +127)

Description: This instruction is only valid in a user-defined function in Flash memory or EEPROM memory. If

the test condition is true, then function execution will continue at the address determined by

adding the signed byte value to the address of the byte immediately following the instruction. It

has a range of -128 to 127 bytes. The JMP instruction can be used for addresses that are outside

this range. If the new address is outside the address range of the function, a function return occurs.

BREAK Debug breakpoint
Opcode: F7

Description: Used in conjunction with the built-in debugger. If the debugger is enabled, a breakpoint occurs and

the debug monitor is entered. If debug mode is not selected, this instruction is ignored.

CEIL Ceiling
Opcode: 52

Description: reg[A] = ceil(reg[A])

Calculates the floating point value equal to the nearest integer that is greater than or equal to the

floating point value in register A. The result is stored in register A.

Micromega Corporation 14 uM-FPU V3.1 Instruction Set

Micromega Corporation 15 uM-FPU V3.1 Instruction Set

Micromega Corporation 16 uM-FPU V3.1 Instruction Set

Special Cases: • if is NaN, then the result is NaN

• if reg[A] is +infinity or -infinity, then the result is +infinity or -infinity

• if reg[A] is 0.0 or –0.0, then the result is 0.0 or –0.0

• if reg[A] is less than zero but greater than –1.0, then the result is –0.0

CHECKSUM Calculate checksum for uM-FPU code
Opcode: F6

Description: A checksum is calculated for the uM-FPU code and user-defined functions stored in Flash. The

checksum value is stored in register 0. This can be used as a diagnostic test for confirming the

state of a uM-FPU chip.

CLR Clear register
Opcode: 03 nn where: nn is a register number

Description: reg[nn] = 0

Set the value of register nn to zero.

CLR0 Clear register 0
Opcode: 06

Description: reg[0] = 0

Set the value of register 0 to zero.

CLRA Clear register A
Opcode: 04

Description: reg[A] = 0

Set the value of register A to zero.

CLRX Clear register X
Opcode: 05

Description: reg[X] = 0, X = X + 1

Set the value of register A to zero, and increment X to select the next register in sequence.

Special Cases: • the X register will not increment past the maximum register value of 127

COPY Copy registers
Opcode: 07 mm nn where: mm and nn are register numbers

Description: reg[nn] = reg[mm]

The value of register mm is copied to register nn.

COPYA Copy register A
Opcode: 08 nn where: nn is a register number

Description: reg[nn] = reg[A]

Set register nn to the value of register A.

Micromega Corporation 15 uM-FPU V3.1 Instruction Set

Micromega Corporation 16 uM-FPU V3.1 Instruction Set

Micromega Corporation 17 uM-FPU V3.1 Instruction Set

COPY0 Copy register 0
Opcode: 10 nn where: nn is a register number

Description: reg[nn] = reg[0]

Set register nn to the value of register 0.

COPYI Copy Immediate value
Opcode: 11 bb nn where: bb is an unsigned byte value (0 to 255)

nn is a register number

Description: reg[nn] = long(unsigned bb)

The 8-bit unsigned value is converted to a long integer and stored in register nn.

COPYX Copy register X
Opcode: 09 nn where: nn is a register number

Description: reg[nn] = reg[X], X = X + 1

Set register nn to the value of register X, and increment X to select the next register in sequence.

Special Cases: • the X register will not increment past the maximum register value of 127

COS Cosine
Opcode: 48

Description: reg[A] = cosine(reg[A])

Calculates the cosine of the angle (in radians) in register A and stored the result in register A.

Special Cases: • if reg[A] is NaN or an infinity, then the result is NaN

DEGREES Convert radians to degrees
Opcode: 4E

Description: The floating point value in register A is converted from radians to degrees and the result is stored

in register A.

Special Cases: • if reg[A] is NaN, then the result is NaN

EECALL Call EEPROM memory user defined function

Opcode: 7F fn where: fn is the function number

Description: The user defined function nn, stored in EEPROM memory, is executed. Up to 16 levels of nesting

is supported for function calls. The EEPROM functions can be stored at run-time using the

EEWRITE instruction.

Special Cases: If the selected user function is not defined, register 0 is set to NaN, and execution continues.

Micromega Corporation 16 uM-FPU V3.1 Instruction Set

Micromega Corporation 17 uM-FPU V3.1 Instruction Set

Micromega Corporation 18 uM-FPU V3.1 Instruction Set

EELOAD Load register nn with value from EEPROM
Opcode: DC nn ee where: nn is a register number

ee is the EEPROM address slot.

Description: reg[nn] = EEPROM[ee]

Register nn is set to the value in EEPROM at the address slot specified by ee. EEPROM address

slots are 4 bytes in length (32-bits).

EELOADA Load register A with value from EEPROM
Opcode: DD ee where: ee is the EEPROM address slot

Description: reg[A] = EEPROM[ee]

Register A is set to the value in EEPROM at the address slot specified by ee . EEPROM address

slots are 4 bytes in length (32-bits).

EESAVE Save register nn to EEPROM
Opcode: DA nn ee where: nn is a register number

ee is the EEPROM address slot

Description: EEPROM[ee] = reg[nn]

The value in register nn is stored in EEPROM at the address slot specified by ee. EEPROM

address slots are 4 bytes in length (32-bits).

EESAVEA Save register A to EEPROM
Opcode: DB ee where: ee is the EEPROM address slot

Description: EEPROM[ee] = reg[A]

The value in register A is stored in EEPROM at the address slot specified by ee. EEPROM

address slots are 4 bytes in length (32-bits).

EEWRITE Write bytes to EEPROM
Opcode: DE ee bc bb...bb

where: ee is the EEPROM address slot

bc is the number of bytes

bb...bb is a string of bytes

Description: Bytes are stored sequentially in EEPROM starting at the EEPROM[ee] address slot

The number of bytes specified by bc are copied to the EEPROM starting at address slot ee.

Address slots are 4 bytes in length (32-bits). Consecutive address slots are used to store the

specified number of bytes. This instruction can be used to store multiple values to the EEPROM

address slots or to dynamically store a user-defined function.

EXP The value e raised to a power
Opcode: 45

Description: reg[A] = exp(reg[A])

Calculates the value of e (2.7182818) raised to the power of the floating point value in register A.

The result is stored in register A.

Special Cases: • if reg[A] is NaN, then the result is NaN

• if reg[A] is +infinity or greater than 88, then the result is +infinity

Micromega Corporation 17 uM-FPU V3.1 Instruction Set

Micromega Corporation 18 uM-FPU V3.1 Instruction Set

Micromega Corporation 19 uM-FPU V3.1 Instruction Set

• if reg[A] is –infinity or less than -88, then the result is 0.0

EXP10 The value 10 raised to a power
Opcode: 46

Description: reg[A] = exp10(reg[A])

Calculates the value of 10 raised to the power of the floating point value in register A. The result is

stored in A.

Special Cases: • if reg[A] is NaN, then the result is NaN

• if reg[A] is +infinity or greater than 38, then the result is +infinity

• if reg[A] is –infinity or less than -38, then the result is 0.0

EXTLONG Load value of external input counter
Opcode: E1

Description: reg[0] = external input count

Load register 0 with the external input count.

EXTSET Set value of external input counter

Opcode: E0

Description: external input count = reg[0]

The external input count is set to the value in register 0.

EXTWAIT Wait for next external input pulse

Opcode: E2

Description: Wait for the next external input to occur.

FABS Floating point absolute value
Opcode: 3F

Description: reg[A] = | reg[A] |

Sets the floating value in register A to the absolute value.

Special Cases: • if reg[A] is NaN, then the result is NaN

FADD Floating point add
Opcode: 21 nn where: nn is a register number

Description: reg[A] = reg[A] + reg[nn]

The floating point value in register nn is added to the floating point value in register A and the

result is stored in register A.

Special Cases: • if either value is NaN, then the result is NaN

• if one value is +infinity and the other is –infinity, then the result is NaN

• if one value is +infinity and the other is not –infinity, then the result is +infinity

• if one value is -infinity and the other is not +infinity, then the result is -infinity

Micromega Corporation 18 uM-FPU V3.1 Instruction Set

Micromega Corporation 19 uM-FPU V3.1 Instruction Set

Micromega Corporation 20 uM-FPU V3.1 Instruction Set

FADD0 Floating point add register 0
Opcode: 2A

Description: reg[A] = reg[A] + reg[0]

The floating point value in register 0 is added to the floating point value in register A and the result

is stored in register A.

Special Cases: • if either value is NaN, then the result is NaN

• if one value is +infinity and the other is –infinity, then the result is NaN

• if one value is +infinity and the other is not –infinity, then the result is +infinity

• if one value is -infinity and the other is not +infinity, then the result is -infinity

FADDI Floating point add immediate value
Opcode: 33 bb where: bb is a signed byte value (-128 to 127)

Description: reg[A] = reg[A] + float(bb)

The signed byte value is converted to floating point and added to the value in register A and the

result is stored in register A.

Special Cases: • if reg[A] is NaN, then the result is NaN

• if reg[A] is +infinity, then the result is +infinity

• if reg[A] is -infinity, then the result is -infinity

FCALL Call Flash memory user defined function

Opcode: 7E fn where: fn is the function number

Description: The user defined function nn, stored in Flash memory, is executed. Up to 16 levels of nesting is

supported for function calls. The uM-FPU IDE provides support for programming user defined

functions in Flash memory using the serial debug monitor (see datasheet).

Special Cases: If the selected user function is not defined, register 0 is set to NaN, and execution continues.

FCMP Floating point compare
Opcode: 28 nn where: nn is a register number

Description: status = compare(reg[A] - reg[nn])

Compares the floating point value in register A with the value in register nn and sets the internal

status byte. The status byte can be read with the READSTATUS instruction. It is set as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

N Z

Bit 2 Not-a-Number Set if either value is not a valid number

Bit 1 Sign Set if reg[A] < reg[nn]

Bit 0 Zero Set if reg[A] = reg[nn]

If neither Bit 0 or Bit 1 is set, reg[A] > reg[nn]

Micromega Corporation 19 uM-FPU V3.1 Instruction Set

Micromega Corporation 20 uM-FPU V3.1 Instruction Set

Micromega Corporation 21 uM-FPU V3.1 Instruction Set

FCMP0 Floating point compare register 0
Opcode: 31

Description: status = compare(reg[A] - reg[0])

Compares the floating point value in register A with the value in register 0 and sets the internal

status byte. The status byte can be read with the READSTATUS instruction. It is set as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

N Z

Bit 2 Not-a-Number Set if either value is not a valid number

Bit 1 Sign Set if reg[A] < reg[0]

Bit 0 Zero Set if reg[A] = reg[0]

If neither Bit 0 or Bit 1 is set, reg[A] > reg[0]

FCMP2 Floating point compare
Opcode: 3D nn mm where: nn and mm are register numbers

Description: status = compare(reg[nn] - reg[mm])

Compares the floating point value in register nn with the value in register mm and sets the internal

status byte. The status byte can be read with the READSTATUS instruction. It is set as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

N Z

Bit 2 Not-a-Number Set if either value is not a valid number

Bit 1 Sign Set if reg[mm] < reg[nn]

Bit 0 Zero Set if reg[mm] = reg[nn]

If neither Bit 0 or Bit 1 is set, reg[mm] > reg[nn]

FCMPI Floating point compare immediate value
Opcode: 3A bb where: bb is a signed byte value (-128 to 127)

Description: status = compare(reg[A] - float(bb))

The signed byte value is converted to floating point and compared to the floating point value in

register A. The status byte can be read with the READSTATUS instruction. It is set as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

N Z

Bit 2 Not-a-Number Set if either value is not a valid number

Bit 1 Sign Set if reg[A] < float(bb)

Bit 0 Zero Set if reg[A] = float(bb)

If neither Bit 0 or Bit 1 is set, reg[A] > float(bb)

FCNV Floating point conversion
Opcode: 56 bb where: bb is an unsigned byte value (0 to 255)

Description: reg[A] = the converted value of reg[A]

Convert the value in register A using the conversion specified by the byte bb and store the fresult

in register A. The conversions are as follows:

0 Fahrenheit to Celsius

1 Celsius to Fahrenheit

2 inches to millimeters

Micromega Corporation 20 uM-FPU V3.1 Instruction Set

Micromega Corporation 21 uM-FPU V3.1 Instruction Set

Micromega Corporation 22 uM-FPU V3.1 Instruction Set

3 millimeters to inches

4 inches to centimeters

5 centimeters to inches

6 inches to meters

7 meters to inches

8 feet to meters

9 meters to feet

10 yards to meters

11 meters to yards

12 miles to kilometers

13 kilometers to miles

14 nautical miles to meters

15 meters to nautical miles

16 acres to meters2

17 meters 2 to acres

18 ounces to grams

19 grams to ounces

20 pounds to kilograms

21 kilograms to pounds

22 US gallons to liters

23 liters to US gallons

24 UK gallons to liters

25 liters to UK gallons

26 US fluid ounces to milliliters

27 milliliters to US fluid ounces

28 UK fluid ounces to milliliters

29 milliliters to UK fluid ounces

30 calories to Joules

31 Joules to calories

32 horsepower to watts

33 watts to horsepower

34 atmospheres to kilopascals

35 kilopascals to atmospheres

36 mmHg to kilopascals

37 kilopascals to mmHg

38 degrees to radians

39 radians to degrees

Special Cases: • if the byte value bb is greater than 39, the value of register A is unchanged.

FDIV Floating point divide
Opcode: 25 nn where: nn is a register number

Description: reg[A] = reg[A] / reg[nn]

The floating point value in register A is divided by the floating point value in register nn and the

result is stored in register A.

Special Cases: • if either value is NaN, then the result is NaN

• if both values are zero or both values are infinity, then the result is NaN

Micromega Corporation 21 uM-FPU V3.1 Instruction Set

Micromega Corporation 22 uM-FPU V3.1 Instruction Set

Micromega Corporation 23 uM-FPU V3.1 Instruction Set

• if reg[nn] is zero and reg[A] is not zero, then the result is infinity

• if reg[nn] is infinity, then the result is zero

FDIV0 Floating point divide by register 0
Opcode: 2E

Description: reg[A] = reg[A] / reg[0]

The floating point value in register A is divided by the floating point value in register 0 and the

result is stored in register A.

Special Cases: • if either value is NaN, then the result is NaN

• if both values are zero or both values are infinity, then the result is NaN

• if reg[nn] is zero and reg[A] is not zero, then the result is infinity

• if reg[nn] is infinity, then the result is zero

FDIVI Floating point divide by immediate value
Opcode: 37 bb where: bb is a signed byte value (-128 to 127)

Description: reg[A] = reg[A] / float(bb)

The signed byte value is converted to floating point and the value in register A is divided by the

converted value and the result is stored in register A.

Special Cases: • if reg[A] is NaN, then the result is NaN

• if both values are zero, then the result is NaN

• if the value bb is zero and reg[A] is not zero, then the result is infinity

FDIVR Floating point divide (reversed)
Opcode: 26 nn where: nn is a register number

Description: reg[A] = reg[nn] / reg[A]

The floating point value in register nn is divided by the floating point value in register A and the

result is stored in register A.

Special Cases: • if either value is NaN, then the result is NaN

• if both values are zero or both values are infinity, then the result is NaN

• if reg[A] is zero and reg[nn] is not zero, then the result is infinity

• if reg[A] is infinity, then the result is zero

FDIVR0 Floating point divide register 0 (reversed)
Opcode: 2F

Description: reg[A] = reg[0] / reg[A]

The floating point value in register 0 is divided by the floating point value in register A and the

result is stored in register A.

Special Cases: • if either value is NaN, then the result is NaN

• if both values are zero or both values are infinity, then the result is NaN

• if reg[A] is zero and reg[0] is not zero, then the result is infinity

• if reg[A] is infinity, then the result is zero

Micromega Corporation 22 uM-FPU V3.1 Instruction Set

Micromega Corporation 23 uM-FPU V3.1 Instruction Set

Micromega Corporation 24 uM-FPU V3.1 Instruction Set

FDIVRI Floating point divide by immediate value (reversed)
Opcode: 38 bb where: bb is a signed byte value (-128 to 127)

Description: reg[A] = float(bb) / reg[A]

The signed byte value is converted to floating point and divided by the value in register A. The

result is stored in register A.

Special Cases: • if reg[A] is NaN, then the result is NaN

• if both values are zero, then the result is NaN

• if the value reg[A] is zero and float(bb) is not zero, then the result is infinity

FFT Fast Fourier Transform
Opcode: 6F bb where: bb specifies the type of operation

Description: The type of operation is specified as follows:

0 first stage

1 next stage

2 next level

3 next block

+4 pre-processing bit reverse sort

+8 pre-processing for inverse FFT

+16 post-processing for inverse FFT

The data for the FFT instruction is stored in matrix A as a Nx2 matrix, where N must be a power

of two. The data points are specified as complex numbers, with the real part stored in the first

column and the imaginary part stored in the second column. If all data points can be stored in the

matrix (maximum of 64 points if all 128 registers are used), the Fast Fourier Transform can be

calculated with a single instruction. If more data points are required than will fit in the matrix, the

calculation must be done in blocks. The algorithm iteratively writes the next block of data,

executes the FFT instruction for the appropriate stage of the FFT calculation, and reads the data

back to the microcontroller. This proceeds in stages until all data points have been processed. See

application notes for more details.

FINV Floating point inverse
Opcode: 40

Description: reg[A] = 1 / reg[A]

The inverse of the floating point value in register A is stored in register A.

Special Cases: • if reg[A] is NaN, then the result is NaN

• if reg[A] is zero, then the result is infinity

• if reg[A] is infinity, then the result is zero

FIX Convert floating point to long integer
Opcode: 61

Description: reg[A] = fix(reg[A])

Converts the floating point value in register A to a long integer value.

Micromega Corporation 23 uM-FPU V3.1 Instruction Set

Micromega Corporation 24 uM-FPU V3.1 Instruction Set

Micromega Corporation 25 uM-FPU V3.1 Instruction Set

Special Cases: • if reg[A] is NaN, then the result is zero

• if reg[A] is +infinity or greater than the maximum signed long integer, then the result is the

maximum signed long integer (decimal: 2147483647, hex: $7FFFFFFF)

• if reg[A] is –infinity or less than the minimum signed long integer, then the result is the

minimum signed long integer (decimal: -2147483648, hex: $80000000)

FIXR Convert floating point to long integer with rounding
Opcode: 62

Description: reg[A] = fix(round(reg[A]))

Converts the floating point value in register A to a long integer value with rounding.

Special Cases: • if reg[A] is NaN, then the result is zero

• if reg[A] is +infinity or greater than the maximum signed long integer, then the result is the

maximum signed long integer (decimal: 2147483647, hex: $7FFFFFFF)

• if reg[A] is –infinity or less than the minimum signed long integer, then the result is the

minimum signed long integer (decimal: -2147483648, hex: $80000000)

FLOAT Convert long integer to floating point
Opcode: 60

Description: reg[A] = float(reg[A])

Converts the long integer value in register A to a floating point value.

FLOOR Floor
Opcode: 51

Description: reg[A] = floor(reg[A])

Calculates the floating point value equal to the nearest integer that is less than or equal to the

floating point value in register A. The result is stored in register A.

Special Cases: • if reg[A] is NaN, then the result is NaN

• if reg[A] is +infinity or -infinity, then the result is +infinity or -infinity

• if reg[A] is 0.0 or –0.0, then the result is 0.0 or –0.0

FMAC Multiply and add to accumulator
Opcode: 57 nn mm where: nn and mm are a register numbers

Description: reg[A] = reg[A] + (reg[nn] * reg[mm])

The floating point value in register nn is multiplied by the value in register mm and the result is

added to register A.

Special Cases: • if either value is NaN, or one value is zero and the other is infinity, then the result is NaN

• if either values is infinity and the other is nonzero, then the result is infinity

FMAX Floating point maximum
Opcode: 55 nn where: nn is a register number

Description: reg[A] = max(reg[A], reg[nn])

The maximum floating point value of registers A and register nn is stored in register A.

Micromega Corporation 24 uM-FPU V3.1 Instruction Set

Micromega Corporation 25 uM-FPU V3.1 Instruction Set

Micromega Corporation 26 uM-FPU V3.1 Instruction Set

Special Cases: • if either value is NaN, then the result is NaN

FMIN Floating point minimum
Opcode: 54 nn where: nn is a register number

Description: reg[A] = min(reg[A], reg[nn])

The minimum floating point value of registers A and register nn is stored in register A.

Special Cases: • if either value is NaN, then the result is NaN

FMOD Floating point remainder

Opcode: 50 nn where: nn is a register number

Description: reg[A] = remainder of reg[A] / (reg[nn]

The floating point remainder of the floating point value in register A divided by register nn is

stored in register A.

FMSC Multiply and subtract from accumulator
Opcode: 58 nn mm where: nn and mm are a register numbers

Description: reg[A] = reg[A] - (reg[nn] * reg[mm])

The floating point value in register nn is multiplied by the value in register mm and the result is

subtracted from register A.

Special Cases: • if either value is NaN, or one value is zero and the other is infinity, then the result is NaN

• if either values is infinity and the other is nonzero, then the result is infinity

FMUL Floating point multiply
Opcode: 24 nn where: nn is a register number

Description: reg[A] = reg[A] * reg[nn]

The floating point value in register A is multiplied by the value in register nn and the result is

stored in register A.

Special Cases: • if either value is NaN, or one value is zero and the other is infinity, then the result is NaN

• if either values is infinity and the other is nonzero, then the result is infinity

FMUL0 Floating point multiply by register 0
Opcode: 2D

Description: reg[A] = reg[A] * reg[0]

The floating point value in register 0 is multiplied by the value in register nn and the result is

stored in register A.

Special Cases: • if either value is NaN, or one value is zero and the other is infinity, then the result is NaN

• if either values is infinity and the other is nonzero, then the result is infinity

Micromega Corporation 25 uM-FPU V3.1 Instruction Set

Micromega Corporation 26 uM-FPU V3.1 Instruction Set

Micromega Corporation 27 uM-FPU V3.1 Instruction Set

FMULI Floating point multiply by immediate value
Opcode: 36 bb where: bb is a signed byte value (-128 to 127)

Description: reg[A] = reg[A] * float[bb]

The signed byte value is converted to floating point and the value in register A is multiplied by the

converted value and the result is stored in reg[A].

Special Cases: • if reg[A] is NaN, then the result is NaN

• if the signed byte is zero and reg[A] is infinity, then the result is NaN

FNEG Floating point negate
Opcode: 3E

Description: reg[A] = -reg[A]

The negative of the floating point value in register A is stored in register A.

Special Cases: • if the value is NaN, then the result is NaN

FPOW Floating point power
Opcode: 27 nn where: nn is a register number

Description: reg[A] = reg[A] ** reg[nn]

The floating point value in register A is raised to the power of the floating point value in register

nn and stored in register A.

Special Cases: • if reg[nn] is 0.0 or –0.0, then the result is 1.0

• if reg[nn] is 1.0, then the result is the same as the A value

• if reg[nn] is NaN, then the result is Nan

• if reg[A] is NaN and reg[nn] is nonzero, then the result is NaN

• if | reg[A] | > 1 and reg[nn] is +infinite, then the result is +infinity

• if | reg[A] | < 1 and reg[nn] is -infinite, then the result is +infinity

• if | reg[A] | > 1 and reg[nn] is -infinite, then the result is 0.0

• if | reg[A] | < 1 and reg[nn] is +infinite, then the result is 0.0

• if | reg[A] | = 1 and reg[nn] is infinite, then the result is NaN

• if reg[A] is 0.0 and reg[nn] > 0, then the result is 0.0

• if reg[A] is +infinity and reg[nn] < 0, then the result is 0.0

• if reg[A] is 0.0 and reg[nn] < 0, then the result is +infinity

• if reg[A] is +infinity and reg[nn] > 0, then the result is +infinity

• if reg[A] is -0.0 and reg[nn] > 0 but not a finite odd integer, then the result is 0.0

• if the reg[A] is -infinity and reg[nn] < 0 but not a finite odd integer, then the result is 0.0

• if reg[A] is -0.0 and the reg[nn] is a positive finite odd integer, then the result is –0.0

• if reg[A] is -infinity and reg[nn] is a negative finite odd integer, then the result is –0.0

• if reg[A] is -0.0 and reg[nn] < 0 but not a finite odd integer, then the result is +infinity

• if reg[A] is -infinity and reg[nn] > 0 but not a finite odd integer,

 then the result is +infinity

• if reg[A] is -0.0 and reg[nn] is a negative finite odd integer, then the result is –infinity

• if reg[A] is -infinity and reg[nn] is a positive finite odd integer,

 then the result is –infinity

• if reg[A] < 0 and reg[nn] is a finite even integer,

Micromega Corporation 26 uM-FPU V3.1 Instruction Set

Micromega Corporation 27 uM-FPU V3.1 Instruction Set

Micromega Corporation 28 uM-FPU V3.1 Instruction Set

then the result is equal to | reg[A] | to the power of reg[nn]

• if reg[A] < 0 and reg[nn] is a finite odd integer,

then the result is equal to the negative of | reg[A] | to the power of reg[nn]

• if reg[A] < 0 and finite and reg[nn] is finite and not an integer, then the result is NaN

FPOW0 Floating point power by register 0
Opcode: 30 nn where: nn is a register number

Description: reg[A] = reg[A] ** reg[0]

The floating point value in register A is raised to the power of the floating point value in register 0

and stored in register A.

Special Cases: • if reg[0] is 0.0 or –0.0, then the result is 1.0

• if reg[0] is 1.0, then the result is the same as the A value

• if reg[0] is NaN, then the result is Nan

• if reg[A] is NaN and reg[0] is nonzero, then the result is NaN

• if | reg[A] | > 1 and reg[0] is +infinite, then the result is +infinity

• if | reg[A] | < 1 and reg[0] is -infinite, then the result is +infinity

• if | reg[A] | > 1 and reg[0] is -infinite, then the result is 0.0

• if | reg[A] | < 1 and reg[0] is +infinite, then the result is 0.0

• if | reg[A] | = 1 and reg[0] is infinite, then the result is NaN

• if reg[A] is 0.0 and reg[0] > 0, then the result is 0.0

• if reg[A] is +infinity and reg[0] < 0, then the result is 0.0

• if reg[A] is 0.0 and reg[0] < 0, then the result is +infinity

• if reg[A] is +infinity and reg[0] > 0, then the result is +infinity

• if reg[A] is -0.0 and reg[0] > 0 but not a finite odd integer, then the result is 0.0

• if the reg[A] is -infinity and reg[0] < 0 but not a finite odd integer, then the result is 0.0

• if reg[A] is -0.0 and the reg[0] is a positive finite odd integer, then the result is –0.0

• if reg[A] is -infinity and reg[0] is a negative finite odd integer, then the result is –0.0

• if reg[A] is -0.0 and reg[0] < 0 but not a finite odd integer, then the result is +infinity

• if reg[A] is -infinity and reg[0] > 0 but not a finite odd integer,

 then the result is +infinity

• if reg[A] is -0.0 and reg[0] is a negative finite odd integer, then the result is –infinity

• if reg[A] is -infinity and reg[0] is a positive finite odd integer,

 then the result is –infinity

• if reg[A] < 0 and reg[0] is a finite even integer,

then the result is equal to | reg[A] | to the power of reg[0]

• if reg[A] < 0 and reg[0] is a finite odd integer,

then the result is equal to the negative of | reg[A] | to the power of reg[0]

• if reg[A] < 0 and finite and reg[0] is finite and not an integer, then the result is NaN

FPOWI Floating point power by immediate value
Opcode: 39 bb where: bb is a signed byte value (-128 to 127)

Description: reg[A] = reg[A] ** float[bb]

The signed byte value is converted to floating point and the value in register A is raised to the

power of the converted value. The result is stored in register A.

Micromega Corporation 27 uM-FPU V3.1 Instruction Set

Micromega Corporation 28 uM-FPU V3.1 Instruction Set

Micromega Corporation 29 uM-FPU V3.1 Instruction Set

Special Cases: • if bb is 0, then the result is 1.0

• if bb is 1, then the result is the same as the A value

• if reg[A] is NaN and bb is nonzero, then the result is NaN

• if reg[A] is 0.0 and bb > 0, then the result is 0.0

• if reg[A] is +infinity and bb < 0, then the result is 0.0

• if reg[A] is 0.0 and bb < 0, then the result is +infinity

• if reg[A] is +infinity and bb > 0, then the result is +infinity

• if reg[A] is -0.0 and bb > 0 but not an odd integer, then the result is 0.0

• if the reg[A] is -infinity and bb < 0 but not an odd integer, then the result is 0.0

• if reg[A] is -0.0 and bb is a positive odd integer, then the result is –0.0

• if reg[A] is -infinity and bb is a negative odd integer, then the result is –0.0

• if reg[A] is -0.0 and bb < 0 but not an odd integer, then the result is +infinity

• if reg[A] is -infinity and bb > 0 but not an odd integer, then the result is +infinity

• if reg[A] is -0.0 and bb is a negative odd integer, then the result is –infinity

• if reg[A] is -infinity and bb is a positive odd integer, then the result is –infinity

• if reg[A] < 0 and bb is an even integer,

then the result is equal to | reg[A] | to the power of bb

• if reg[A] < 0 and bb is an odd integer,

then the result is equal to the negative of | reg[A] | to the power of bb

FRAC Get fractional part of floating point value
Opcode: 63

Description: Register A is loaded with the fractional part the floating point value in register A. The sign of the

fraction is the same as the sign of the original value.

Special Cases: • if register A is NaN or infinity, then the result is NaN

FREAD Read floating point value
Opcode: 1A nn where: nn is a register number

Returns: b1,b2,b3,b4 where: b1, b2, b3, b4 is floating point value (b1 is MSB)

Description: Return 32-bit value from reg[nn]

The floating point value of register nn is returned. The four bytes of the 32-bit floating point value

must be read immediately following this instruction. If the PIC data format has been selected

(using the PICMODE instruction), the IEEE 754 format floating point value is converted to PIC

format before being sent.

FREAD0 Read floating point value from register 0
Opcode: 1D

Returns: b1,b2,b3,b4 where: b1, b2, b3, b4 is floating point value (b1 is MSB)

Description: Return 32-bit value from reg[0]

The floating point value from register 0 is returned. The four bytes of the 32-bit floating point

value must be read immediately following this instruction. If the PIC data format has been selected

(using the PICMODE instruction), the IEEE 754 format floating point value is converted to PIC

format before being sent.

Micromega Corporation 28 uM-FPU V3.1 Instruction Set

Micromega Corporation 29 uM-FPU V3.1 Instruction Set

Micromega Corporation 30 uM-FPU V3.1 Instruction Set

FREADA Read floating point value from register A
Opcode: 1B

Returns: b1,b2,b3,b4 where: b1, b2, b3, b4 is floating point value (b1 is MSB)

Description: Return 32-bit value from reg[A]

The floating point value of register A is returned. The four bytes of the 32-bit floating point value

must be read immediately following this instruction. If the PIC data format has been selected

(using the PICMODE instruction), the IEEE 754 format floating point value is converted to PIC

format before being sent.

FREADX Read floating point value from register X
Opcode: 1C

Returns: b1,b2,b3,b4 where: b1, b2, b3, b4 is floating point value (b1 is MSB)

Description: Return 32-bit value from reg[X], X = X + 1

The floating point value from register X is returned, and X is incremented to the next register. The

four bytes of the 32-bit floating point value must be read immediately following this instruction. If

the PIC data format has been selected (using the PICMODE instruction), the IEEE 754 format

floating point value is converted to PIC format before being sent.

FSET Set register A
Opcode: 20 nn where: nn is a register number

Description: reg[A] = reg[nn]

Set register A to the value of register nn.

FSET0 Set register A from register 0

Opcode: 29

Description: reg[A] = reg[0]

Set register A to the value of register 0.

FSETI Set register from immediate value
Opcode: 32 bb where: bb is a signed byte value (-128 to 127)

Description: reg[A] = float(bb)

The signed byte value is converted to floating point and stored in register A.

FSPLIT Split integer and fractional portions of floating point value

Opcode: 64

Description: reg[A] = integer portion of reg[A], reg[0] = fractional portion of reg[A]

The integer portion of the original value in register A is stored in register A, and the fractional

portion is stored in register 0. Both values are stored as floating point values.

Special Cases: • if the original value is NaN or Infinity, reg[A] is set to zero and reg[0] is set to NaN

Micromega Corporation 29 uM-FPU V3.1 Instruction Set

Micromega Corporation 30 uM-FPU V3.1 Instruction Set

Micromega Corporation 31 uM-FPU V3.1 Instruction Set

FSTATUS Get floating point status
Opcode: 3B nn where: nn is a register number

Description: status = status(reg[nn])

Set the internal status byte to the floating point status of the value in register nn. The status byte

can be read with the READSTATUS instruction. It is set as follows:

1 - - - I S

7 6 5 4 3 2 1 0Bit

N Z

Bit 3 Infinity Set if the value is an infinity

Bit 2 Not-a-Number Set if the value is not a valid number

Bit 1 Sign Set if the value is negative

Bit 0 Zero Set if the value is zero

FSTATUSA Get floating point status of register A
Opcode: 3C

Description: status = status(reg[A])

Set the internal status byte to the floating point status of the value in register A. The status byte can

be read with the READSTATUS instruction. It is set as follows:

1 - - - I S

7 6 5 4 3 2 1 0Bit

N Z

Bit 3 Infinity Set if the value is an infinity

Bit 2 Not-a-Number Set if the value is not a valid number

Bit 1 Sign Set if the value is negative

Bit 0 Zero Set if the value is zero

FSUB Floating point subtract
Opcode: 22 nn where: nn is a register number

Description: reg[A] = reg[A] - reg[nn]

The floating point value in register nn is subtracted from the floating point value in register A.

Special Cases: • if either value is NaN, then the result is NaN

• if both values are infinity and the same sign, then the result is NaN

• if reg[A] is +infinity and reg[nn] is not +infinity, then the result is +infinity

• if reg[A] is -infinity and reg[nn] is not -infinity, then the result is -infinity

• if reg[A] is not an infinity and reg[nn] is an infinity, then the result is an infinity of the opposite

sign as reg[nn]

FSUB0 Floating point subtract register 0
Opcode: 2B

Description: reg[A] = reg[A] - reg[0]

The floating point value in register 0 is subtracted from the floating point value in register A.

Special Cases: • if either value is NaN, then the result is NaN

• if both values are infinity and the same sign, then the result is NaN

• if reg[A] is +infinity and reg[0] is not +infinity, then the result is +infinity

• if reg[A] is -infinity and reg[0] is not -infinity, then the result is -infinity

Micromega Corporation 30 uM-FPU V3.1 Instruction Set

Micromega Corporation 31 uM-FPU V3.1 Instruction Set

Micromega Corporation 32 uM-FPU V3.1 Instruction Set

• if reg[A] is not an infinity and reg[0] is an infinity, then the result is an infinity of the opposite

sign as reg[0]

FSUBI Floating point subtract immediate value
Opcode: 34 bb where: bb is a signed byte value (-128 to 127)

Description: reg[A] = reg[A] - float[bb]

The signed byte value is converted to floating point and subtracted from the value in register A.

Special Cases: • if reg[A] is NaN, then the result is NaN

• if reg[A] is +infinity, then the result is +infinity

• if reg[A] is -infinity, then the result is -infinity

FSUBR Floating point subtract (reversed)
Opcode: 23 nn where: nn is a register number

Description: reg[A] = reg[nn] - reg[A]

The floating point value in register A is subtracted from the floating point value in register nn and

the result is stored in register A.

Special Cases: • if either value is NaN, then the result is NaN

• if both values are infinity and the same sign, then the result is NaN

• if reg[nn] is +infinity and reg[A] is not +infinity, then the result is +infinity

• if reg[nn] is -infinity and reg[A] is not -infinity, then the result is -infinity

• if reg[nn] is not an infinity and reg[A] is an infinity, then the result is an infinity of the opposite

sign as reg[A]

FSUBR0 Floating point subtract register 0 (reversed)
Opcode: 2C

Description: reg[A] = reg[0] - reg[A]

The floating point value in register A is subtracted from the floating point value in register 0 and

the result is stored in register A.

Special Cases: • if either value is NaN, then the result is NaN

• if both values are infinity and the same sign, then the result is NaN

• if reg[nn] is +infinity and reg[0] is not +infinity, then the result is +infinity

• if reg[nn] is -infinity and reg[A] is not -infinity, then the result is -infinity

• if reg[nn] is not an infinity and reg[A] is an infinity, then the result is an infinity of the opposite

sign as reg[A]

FSUBRI Floating point subtract immediate value (reversed)
Opcode: 35 bb where: bb is a signed byte value (-128 to 127)

Description: reg[A] = float[bb] - reg[A]

The signed byte value is converted to floating point and the value in reg[A] is subtracted from it

and stored in reg[A].

Special Cases: • if reg[A] is NaN, then the result is NaN

• if reg[A] is +infinity, then the result is +infinity

Micromega Corporation 31 uM-FPU V3.1 Instruction Set

Micromega Corporation 32 uM-FPU V3.1 Instruction Set

Micromega Corporation 33 uM-FPU V3.1 Instruction Set

• if reg[A] is -infinity, then the result is -infinity

FTABLE Floating point reverse table lookup

Opcode: 85 cc tc t1…tn where: cc is the test condition

tc is the size of the table

t1…tn are 32-bit floating point values

Description: reg[0] = index of table entry that matches the test condition for reg[A]

This instruction is only valid in a user-defined function in Flash memory or EEPROM memory. It

performs a reverse table lookup on a floating point value. The value in register A is compared to

the values in the table using the test condition. The index number of the first table entry that

satisfies the test condition is returned in register 0. If no entry is found, register 0 is unchanged.

The index number for the first table entry is zero.

FTOA Convert floating point value to ASCII string
Opcode: 1F bb where: bb is the format byte

Description: The floating point value in register A is converted to an ASCII string and stored in the string buffer

at the current selection point. The selection point is updated to point immediately after the inserted

string, so multiple insertions can be appended. The byte immediately following the FTOA opcode

is the format byte and determines the format of the converted value.

If the format byte is zero, as many digits as necessary will be used to represent the number with up

to eight significant digits. Very large or very small numbers are represented in exponential

notation. The length of the displayed value is variable and can be from 3 to 12 characters in length.

The special cases of NaN (Not a Number), +infinity, -infinity, and -0.0 are handled. Examples of

the ASCII strings produced are as follows:

1.0 NaN 0.0

10e20 Infinity -0.0

3.1415927 -Infinity 1.0

-52.333334 -3.5e-5 0.01

If the format byte is non-zero, it is interpreted as a decimal number. The tens digit specifies the

maximum length of the converted string, and the ones digit specifies the number of decimal points.

The maximum number of digits for the formatted conversion is 9, and the maximum number of

decimal points is 6. If the floating point value is too large for the format specified, asterisks will be

stored. If the number of decimal points is zero, no decimal point will be displayed. Examples of

the display format are as follows: (note: leading spaces are shown where applicable)

Value in register A Format byte Display format

123.567 61 (6.1) 123.6

123.567 62 (6.2) 123.57

123.567 42 (4.2) *.**

0.9999 20 (2.0) 1

0.9999 31 (3.1) 1.0

This instruction is usually followed by a READSTR instruction to read the string.

Micromega Corporation 32 uM-FPU V3.1 Instruction Set

Micromega Corporation 33 uM-FPU V3.1 Instruction Set

Micromega Corporation 34 uM-FPU V3.1 Instruction Set

FWRITE Write floating point value
Opcode: 16 nn b1...b4 where: nn is register number

b1...b4 is floating point value (b1 is MSB)

Description: reg[nn] = 32-bit floating point value

The floating point value is stored in register nn. If the PIC data format has been selected (using

the PICMODE instruction), the PIC format floating point value is converted to IEEE 754 format

before being stored in the register.

FWRITE0 Write floating point value to register 0
Opcode: 19 b1...b4 where: b1...b4 is floating point value (b1 is MSB)

Description: reg[0] = 32-bit floating point value

The floating point value is stored in register A. If the PIC data format has been selected (using the

PICMODE instruction), the PIC format floating point value is converted to IEEE 754 format before

being stored in register A.

FWRITEA Write floating point value to register A
Opcode: 17 b1...b4 where: b1...b4 is floating point value (b1 is MSB)

Description: reg[A] = 32-bit floating point value

The floating point value is stored in register A. If the PIC data format has been selected (using the

PICMODE instruction), the PIC format floating point value is converted to IEEE 754 format before

being stored in register A.

FWRITEX Write floating point value to register X
Opcode: 18 b1...b4 where: b1...b4 is floating point value (b1 is MSB)

Description: reg[A] = 32-bit floating point value, X = X + 1

The floating point value is stored in register X, and X is incremented to the next register. If the PIC

data format has been selected (using the PICMODE instruction), the PIC format floating point

value is converted to IEEE 754 format before being stored in register A.

Special Cases: • the X register will not increment past the maximum register value of 127

GOTO Computed GOTO

Opcode: 89 nn where: nn is a register number

Description: This instruction is only valid in a user-defined function in Flash memory or EEPROM memory.

Function execution will continue at the address determined by adding the register value to the

current function address. If the register value is negative, or the new address is outside the address

range of the function, a function return occurs.

IEEEMODE Select IEEE floating point format
Opcode: F4

Description: Selects the IEEE 754 floating point format for the FREAD, FREADA, FREADX, FWRITE,

FWRITEA, and FWRITEX instructions. This is the default mode on reset and only needs to be

changed if the PICMODE instruction has been used.

Micromega Corporation 33 uM-FPU V3.1 Instruction Set

Micromega Corporation 34 uM-FPU V3.1 Instruction Set

Micromega Corporation 35 uM-FPU V3.1 Instruction Set

INDA Select A using value in register

Opcode: 7C nn where: nn is a register number

Description: A = reg[nn]

Select register A using the value contained in register nn

INDX Select X using value in register

Opcode: 7D nn where: nn is a register number

Description: X = reg[nn]

Select register X using the value contained in register nn.

JMP Unconditional jump

Opcode: 83 b1 b2 where: b1,b2 is the function address

Description: This instruction is only valid in a user-defined function in Flash memory or EEPROM memory.

Function execution will continue at the address specified. The BRA instruction can be used for

addresses that are within -128 to 127 bytes of the current address. If the new address is outside the

address range of the function, a function return occurs.

JMP,cc Conditional jump

Opcode: 84 cc, bb where: cc is the test condition

b1,b2 is the function address

Description: This instruction is only valid in a user-defined function in Flash memory or EEPROM memory. If

the test condition is true, then function execution will continue at the address specified. The BRA

instruction can be used for addresses that are within -128 to 127 bytes of the current address. If the

new address is outside the address range of the function, a function return occurs.

LABS Long Integer absolute value
Opcode: BC

Description: reg[A] = | reg[A] |, status = status(reg[A])

The absolute value of the long integer value in register A is stored in register A.

LADD Long integer add
Opcode: 9B nn where: nn is a register number

Description: reg[A] = reg[A] + reg[nn], status = status(reg[A])

The long integer value in register nn is added to register A.

LADD0 Long integer add register 0
Opcode: A6

Description: reg[A] = reg[A] + reg[0], status = status(reg[A])

The long integer value in register 0 is added to register A.

Micromega Corporation 34 uM-FPU V3.1 Instruction Set

Micromega Corporation 35 uM-FPU V3.1 Instruction Set

Micromega Corporation 36 uM-FPU V3.1 Instruction Set

LADDI Long integer add immediate value
Opcode: AF bb where: bb is a signed byte value (-128 to 127)

Description: reg[A] = reg[A] + long(bb), status = status(reg[A])

The signed byte value is converted to a long integer and added to register A.

LAND Long integer AND

Opcode: C0 nn where: nn is a register number

Description: reg[A] = reg[A] AND reg[nn], status = status(reg[A])

The bitwise AND of the values in register A and register nn is stored in register A.

LCMP Long integer compare
Opcode: A1 nn where: nn is a register number

Description: status = compare(reg[A] - reg[nn])

Compares the signed long integer value in register A with the value in register nn and sets the

internal status byte. The status byte can be read with the READSTATUS instruction. It is set as

follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z

Bit 1 Sign Set if reg[A] < reg[nn]

Bit 0 Zero Set if reg[A] = reg[nn]

If neither Bit 0 or Bit 1 is set, reg[A] > reg[nn]

LCMP0 Long integer compare register 0
Opcode: AA

Description: status = compare(reg[A] - reg[0])

Compares the signed long integer value in register A with the value in register 0 and sets the

internal status byte. The status byte can be read with the READSTATUS instruction. It is set as

follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z

Bit 1 Sign Set if reg[A] < reg[0]

Bit 0 Zero Set if reg[A] = reg[0]

If neither Bit 0 or Bit 1 is set, reg[A] > reg[0]

LCMP2 Long integer compare
Opcode: B9 nn mm where: nn and mm are register numbers

Description: status = compare(reg[nn] - reg[mm])

Compares the signed long integer value in register nn with the value in register mm and sets the

internal status byte. The status byte can be read with the READSTATUS instruction. It is set as

follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z

Bit 1 Sign Set if reg[nn] < reg[mm]

Micromega Corporation 35 uM-FPU V3.1 Instruction Set

Micromega Corporation 36 uM-FPU V3.1 Instruction Set

Micromega Corporation 37 uM-FPU V3.1 Instruction Set

Bit 0 Zero Set if reg[nn] = reg[mm]

If neither Bit 0 or Bit 1 is set, reg[nn] > reg[mm]

LCMPI Long integer compare immediate value
Opcode: B3 bb where: bb is a signed byte value (-128 to 127)

Description: status = compare(reg[A] - long(bb))

The signed byte value is converted to long integer and compared to the signed long integer value

in register A. The status byte can be read with the READSTATUS instruction. It is set as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z

Bit 1 Sign Set if reg[A] < long(bb)

Bit 0 Zero Set if reg[A] = long(bb)

If neither Bit 0 or Bit 1 is set, reg[A] > long(bb)

LDEC Long integer decrement
Opcode: BE nn where: nn is a register number

Description: reg[nn] = reg[nn] - 1, status = status(reg[nn])

The long integer value in register nn is decremented by one. The long integer status is stored in

the status byte.

LDIV Long integer divide
Opcode: A0 nn where: nn is a register number

Description: regA] = reg[A] / reg[nn], reg[0] = remainder, status = status(reg[A])

The long integer value in register A is divided by the signed value in register nn, and the result is

stored in register A. The remainder is stored in register 0.

Special Cases: • if reg[nn] is zero, the result is the largest positive long integer ($7FFFFFFF)

LDIV0 Long integer divide by register 0
Opcode: A9

Description: reg[A] = reg[A] / reg[0], reg[0] = remainder, status = status(reg[A])

The long integer value in register A is divided by the signed value in register 0, and the result is

stored in register A. The remainder is stored in register 0.

Special Cases: • if reg[0] is zero, the result is the largest positive long integer ($7FFFFFFF)

LDIVI Long integer divide by immediate value
Opcode: B2 bb where: bb is a signed byte value (-128 to 127)

Description: reg[A] = reg[A] / long(bb), reg[0] = remainder, status = status(reg[A])

The signed byte value is converted to a long integer and register A is divided by the converted

value. The result is stored in register A. The remainder is stored in register 0.

Special Cases: • if the signed byte value is zero, the result is the largest positive long integer ($7FFFFFFF)

Micromega Corporation 36 uM-FPU V3.1 Instruction Set

Micromega Corporation 37 uM-FPU V3.1 Instruction Set

Micromega Corporation 38 uM-FPU V3.1 Instruction Set

LEFT Left Parenthesis (modified V3.1)
Opcode: 14

Description: The LEFT instruction saves the current register A selection, allocates the next temporary register,

sets the value of the temporary register to the current register A value, then selects the temporary

register as register A. The RIGHT instruction is used to restore previous values. When used

together, these instruction are like parentheses in an equation, and can be used to allocate

temporary registers, and change the order of a calculation. Parentheses can be nested up to eight

levels.

Special Cases: • If the maximum number of temporary register is exceeded, the value of register A is set to NaN

($7FFFFFFF).

LINC Long integer increment

Opcode: BD nn where: nn is a register number

Description: reg[nn] = reg[nn] + 1, status = status(reg[nn])

The long integer value in register nn is incremented by one. The long integer status is stored in the

status byte.

LMAX Floating point maximum
Opcode: C5 nn where: nn is a register number

Description: reg[A] = max(reg[A], reg[nn]), status = status(reg[A])

The maximum signed long integer value of registers A and register nn is stored in register A.

Special Cases: • if either value is NaN, then the result is NaN

LMIN Floating point minimum
Opcode: C4 nn where: nn is a register number

Description: reg[A] = min(reg[A], reg[nn]), status = status(reg[A])

The minimum signed long integer value of registers A and register nn is stored in register A.

Special Cases: • if either value is NaN, then the result is NaN

LMUL Long integer multiply
Opcode: 9F nn where: nn is a register number

Description: reg[A] = reg[A] * reg[nn], status = status(reg[A])

The long integer value in register A is multiplied by register nn and the result is stored in register

A.

LMUL0 Long integer multiply by register 0
Opcode: A8

Description: reg[A] = reg[A] * reg[0], status = status(reg[A])

The long integer value in register A is multiplied by register 0 and the result is stored in register A.

Micromega Corporation 37 uM-FPU V3.1 Instruction Set

Micromega Corporation 38 uM-FPU V3.1 Instruction Set

Micromega Corporation 39 uM-FPU V3.1 Instruction Set

LMULI Long integer multiply by immediate value
Opcode: B1 bb where: bb is a signed byte value (-128 to 127)

Description: reg[A] = reg[A] * long(bb), status = status(reg[A])

The signed byte value is converted to a long integer and the long integer value in register A is

multiplied by the converted value. The result is stored in register A.

LNEG Long integer negate
Opcode: BB

Description: reg[A] = -reg[A], status = status(reg[A])

The negative of the long integer value in register A is stored in register A.

LNOT A = NOT A
Opcode: BF

Description: reg[A] = NOT reg[A], status = status(reg[A])

The bitwise complement of the value in register A is stored in register A.

LOAD reg[0] = reg[nn]
Opcode: 0A nn where: nn is a register number

Description: reg[0] = reg[nn]

Load register 0 with the value in register nn.

LOADA Load register 0 with the value of register A
Opcode: 0B

Description: reg[0] = reg[A]

Load register 0 with the value of register A.

LOADBYTE Load register 0 with 8-bit signed value
Opcode: 59 bb where: bb is a signed byte value (-128 to 127)

Description: reg[0] = float(signed bb)

Loads register 0 with the 8-bit signed integer value converted to floating point value.

LOADCON Load register 0 with floating point constant
Opcode: 5F bb where: bb selects the constant

Description: This instruction is defined for version 3.0.0 to V3.1.3 of the uM-FPU V3 chip, but will be removed

in future versions. Use of this instruction is not recommended. Constant values can easily be

loaded using the FWRITE0 instruction.

reg[0] = constant[bb]

Loads register 0 with the floating point constant specified by bb as follows:

0 1.0 100

1 10.0 101

2 100.0 102

3 1000.0 103

Micromega Corporation 38 uM-FPU V3.1 Instruction Set

Micromega Corporation 39 uM-FPU V3.1 Instruction Set

Micromega Corporation 40 uM-FPU V3.1 Instruction Set

4 10000.0 104

5 100000.0 105

6 1000000.0 106

7 10000000.0 107

8 100000000.0 108

9 1000000000.0 109

10 ! 3.4028235"1038 largest positive finite 32-bit floating point value

11 ! 1.4012985"10#45 smallest positive non-zero 32-bit floating point value

12 299792458.0 speed of light in vacuum (m/s)

13 6.6742e-11 Newtonian constant of gravitation (m3/kg*s2)

14 9.80665 acceleration of gravity

15 9.1093826e-31 electron mass (kg)

16 1.67262171e-27 proton mass (kg)

17 1.67492728e-27 neutron mass (kg)

18 6.0221415e23 Avogadro constant (/mol)

19 1.60217653e-19 elementary charge, electron volt

20 101.325 standard atmosphere (kPa)

Special Cases: • if the byte value bb is greater than 20, register A is set to NaN.

LOADE Load register 0 with floating point value of e (2.7182818)
Opcode: 5D

Description: reg[0] = 2.7182818

Loads register 0 with the floating point value of e (2.7182818).

LOADIND Load Indirect
Opcode: 7A nn where: nn is a register number

Description: reg[0] = reg[reg[nn]]

Load register 0 with the value of the register number contained in register nn. The value in

register nn is assumed to be a long integer value.

Special Cases: If the value in register nn > 127, register 127 is used.

LOADMA Load register 0 with the value from matrix A
Opcode: 68 bb bb where: bb, bb selects the row, column of matrix A

Description: reg[0] = matrix A [bb, bb]

Load register 0 with a value from matrix A.

Special Cases: If the row or column is out of range, NaN is returned.

LOADMB Load register 0 with the value from matrix A
Opcode: 69 bb bb where: bb, bb selects the row, column of matrix B

Description: reg[0] = matrix B [bb, bb]

Load register 0 with a value from matrix B.

Micromega Corporation 39 uM-FPU V3.1 Instruction Set

Micromega Corporation 40 uM-FPU V3.1 Instruction Set

Micromega Corporation 41 uM-FPU V3.1 Instruction Set

Special Cases: If the row or column is out of range, NaN is returned.

LOADMC Load register 0 with the value from matrix A
Opcode: 6A bb bb where: bb, bb selects the row, column of matrix C

Description: reg[0] = matrix C [bb, bb]

Load register 0 with a value from matrix C.

Special Cases: If the row or column is out of range, NaN is returned.

LOADPI Load register 0 with value of Pi
Opcode: 5E

Description: reg[0] = 3.1415927

Loads register 0 with the floating point value of pi (3.1415927).

LOADUBYTE Load register 0 with 8-bit unsigned value
Opcode: 5A bb where: bb is an unsigned byte value (0 to 255)

Description: reg[0] = float(unsigned bb)

The 8-bit unsigned value is converted to floating point and stored in register 0.

LOADUWORD Load register 0 with 16-bit unsigned value
Opcode: 5C b1,b2 where: b1,b2 is an unsigned word value (0 to 65535)

Description: reg[0] = float(unsigned (b1*256 + b2))

The 16-bit unsigned value is converted to floating point and stored in register 0.

LOADWORD Load register 0 with 16-bit signed value
Opcode: 5B b1,b2 where: b1,b2 is a signed word value (-32768 to 32767)

Description: reg[0] = float (signed(b1*256 + b2))

The 16-bit signed value is converted to floating point and stored in register 0.

LOADX Load register 0 with the value of register X
Opcode: 0C

Description: reg[0] = reg[X], X = X + 1

Load register 0 with the value of register X, and increment X to select the next register in

sequence.

Special Cases: • the X register will not increment past the maximum register value of 127

LOG Logarithm (base e)
Opcode: 43

Description: reg[A] = log(reg[A])

Calculates the natural log of the floating point value in register A. The result is stored in register A.

The number e (2.7182818) is the base of the natural system of logarithms.

Micromega Corporation 40 uM-FPU V3.1 Instruction Set

Micromega Corporation 41 uM-FPU V3.1 Instruction Set

Micromega Corporation 42 uM-FPU V3.1 Instruction Set

Special Cases: • if the value is NaN or less than zero, then the result is NaN

• if the value is +infinity, then the result is +infinity

• if the value is 0.0 or –0.0, then the result is -infinity

LOG10 Logarithm (base 10)
Opcode: 44

Description: reg[A] = log10(reg[A])

Calculates the base 10 logarithm of the floating point value in register A. The result is stored in

register A.

Special Cases: • if the value is NaN or less than zero, then the result is NaN

• if the value is +infinity, then the result is +infinity

• if the value is 0.0 or –0.0, then the result is -infinity

LONGBYTE Load register 0 with 8-bit signed value
Opcode: C6 bb where: bb is a signed byte value (-128 to 127)

Description: reg[0] = long(signed (bb)), status = status(reg[0])

The 8-bit signed value is converted to a long integer and stored in register 0.

LONGUBYTE Load register 0 with 8-bit unsigned value
Opcode: C7 bb where: bb is an unsigned byte value (0 to 255)

Description: reg[0] = long(unsigned (bb)), status = status(reg[0])

The 8-bit unsigned value is converted to a long integer and stored in register 0.

LONGUWORD Load register 0 with 16-bit unsigned value
Opcode: C9 b1,b2 where: b1,b2 is an unsigned word value (0 to 65535)

Description: reg[0] = long(unsigned (b1*256 + b2)), status = status(reg[0])

The 16-bit unsigned value is converted to a long integer and stored in register 0.

LONGWORD Load register 0 with 16-bit signed value
Opcode: C8 b1,b2 where: b1,b2 is a signed word value (-32768 to 32767)

Description: reg[0] = long(signed (b1*256 + b2)), status = status(reg[0])

The 16-bit signed value is converted to a long integer and stored in register 0.

LOR Long integer OR
Opcode: C1 nn where: nn is a register number

Description: reg[A] = reg[A] OR reg[nn], status = status(reg[A])

The bitwise OR of the values in register A and register nn is stored in register A.

LREAD Read long integer value
Opcode: 94 nn where: nn is a register number

Returns: b1,b2,b3,b4 where: b1, b2, b3, b4 is floating point value (b1 is MSB)

Description: Return 32-bit value from reg[nn]

Micromega Corporation 41 uM-FPU V3.1 Instruction Set

Micromega Corporation 42 uM-FPU V3.1 Instruction Set

Micromega Corporation 43 uM-FPU V3.1 Instruction Set

The long integer value of register nn is returned. The four bytes of the 32-bit floating point value

must be read immediately following this instruction.

LREAD0 Read long integer value from register 0
Opcode: 97

Returns: b1,b2,b3,b4 where: b1, b2, b3, b4 is floating point value (b1 is MSB)

Description: Return 32-bit value from reg[0]

The long integer value of register 0 is returned. The four bytes of the 32-bit floating point value

must be read immediately following this instruction.

LREADA Read long integer value from register A
Opcode: 95

Returns: b1,b2,b3,b4 where: b1, b2, b3, b4 is floating point value (b1 is MSB)

Description: Return 32-bit value from reg[A], status = status(reg[A])

The long integer value of register A is returned. The four bytes of the 32-bit floating point value

must be read immediately following this instruction.

LREADBYTE Read the lower 8-bits of register A
Opcode: 98

Returns: bb where: bb is 8-bit value

Description: Return 8-bit value from reg[A]

Returns the lower 8 bits of register A. The byte containing the 8-bit long integer value must be

read immediately following the instruction.

LREADWORD Read the lower 16-bits of register A
Opcode: 99

Returns: b1,b2 where: b1, b2 is 16-bit value (b1 is MSB)

Description: Return 16-bit value from reg[A]

Returns the lower 16 bits of register A. The two bytes containing the 16-bit long integer value

must be read immediately following this instruction.

LREADX Read long integer value from register X
Opcode: 96

Returns: b1,b2,b3,b4 where: b1, b2, b3, b4 is floating point value (b1 is MSB)

Description: Return 32-bit value from reg[X], X = X + 1

The long integer value from register X is returned, and X is incremented to the next register. The

four bytes of the 32-bit floating point value must be read immediately following this instruction.

LSET Set register A

Opcode: 9C nn where: nn is a register number

Description: reg[A] = reg[nn], status = status(reg[A])

Set register A to the value of register nn.

Micromega Corporation 42 uM-FPU V3.1 Instruction Set

Micromega Corporation 43 uM-FPU V3.1 Instruction Set

Micromega Corporation 44 uM-FPU V3.1 Instruction Set

LSET0 Set register A from register 0

Opcode: A5

Description: reg[A] = reg[0], status = status(reg[A])

Set register A to the value of register 0.

LSETI Set register from immediate value
Opcode: AE bb where: bb is a signed byte value (-128 to 127)

Description: reg[A] = long(bb), status = status(reg[A])

The signed byte value is converted to a long integer and stored in register A.

LSHIFT A = A shifted by B bit positions
Opcode: C3 nn where: nn is a register number

Description: if reg[nn] > 0, then reg[A] = reg[A] shifted left by bb bits

if reg[nn]< 0, then reg[A] = reg[A] shifted right by bb bits

status = status(reg[nn])

The value in register A is shifted by the number of bit positions specified by the long integer value

in register nn. Register A is shifted left if the value in register nn is positive, and right if the value

is negative.

Special Cases: • if reg[nn] = 0, no shift occurs

• if reg[nn] > 32 or reg[nn] < –32, then reg[A] = 0

LSTATUS Get long integer status
Opcode: B7 nn where: nn is a register number

Description: status = status(reg[nn])

Set the internal status byte to the long integer status of the value in register nn. The status byte can

be read with the READSTATUS instruction. It is set as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z

Bit 1 Sign Set if the value is negative

Bit 0 Zero Set if the value is zero

LSTATUSA Get long integer status of register A
Opcode: B8

Description: status = status(reg[A])

Set the internal status byte to the long integer status of the value in register A. The status byte can

be read with the READSTATUS instruction. It is set as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z

Bit 1 Sign Set if the value is negative

Bit 0 Zero Set if the value is zero

Micromega Corporation 43 uM-FPU V3.1 Instruction Set

Micromega Corporation 44 uM-FPU V3.1 Instruction Set

Micromega Corporation 45 uM-FPU V3.1 Instruction Set

LSUB Long integer subtract
Opcode: 9E nn where: nn is a register number

Description: reg[A] = reg[A] - reg[nn], status = status(reg[A])

The long integer value in register nn is subtracted from register A.

LSUB0 Long integer subtract register 0
Opcode: A7

Description: reg[A] = reg[A] - reg[0], status = status(reg[A])

The long integer value in register 0 is subtracted from register A.

LSUBI Long integer subtract immediate value
Opcode: B0 bb where: bb is a signed byte value (-128 to 127)

Description: reg[A] = reg[A] - long(bb), status = status(reg[A])

The signed byte value is converted to a long integer and subtracted from register A.

LTABLE Long integer reverse table lookup

Opcode: 87 cc tc t1…tn where: cc is the test condition

tc is the size of the table

t1…tn are 32-bit long integer values

Description: reg[0] = index of table entry that matches the test condition for reg[A]

This instruction is only valid in a user-defined function in Flash memory or EEPROM memory. It

performs a reverse table lookup on a long integer value. The value in register A is compared to the

values in the table using the specified test condition. The index number of the first table entry that

satisfied the test condition is returned in register 0. If no entry is found, register 0 is unchanged.

The index number for the first table entry is zero.

LTOA Convert long integer value to ASCII string and store in string buffer
Opcode: 9B bb where: bb is the format byte

Description: stringbuffer = converted string, status = status(reg[A])

The long integer value in register A is converted to an ASCII string and stored in the string buffer

at the current selection point. The selection point is updated to point immediately after the inserted

string, so multiple insertions can be appended. The byte immediately following the LTOA opcode

is the format byte and determines the format of the converted value.

If the format byte is zero, the length of the converted string is variable and can range from 1 to 11

characters in length. Examples of the converted string are as follows:

1

500000

-3598390

If the format byte is non-zero, it is interpreted as a decimal number. A value between 0 and 15

specifies the length of the converted string. The converted string is right justified. If 100 is added

to the format value the value is converted as an unsigned long integer, otherwise it is converted as

an signed long integer. If the value is larger than the specified width, asterisks are stored. If the

length is specified as zero, the string will be as long as necessary to represent the number.

Micromega Corporation 44 uM-FPU V3.1 Instruction Set

Micromega Corporation 45 uM-FPU V3.1 Instruction Set

Micromega Corporation 46 uM-FPU V3.1 Instruction Set

Examples of the converted string are as follows: (note: leading spaces are shown where

applicable)

Value in register A Format byte Display format

-1 10 (signed 10) -1

-1 110 (unsigned 10) 4294967295

-1 4 (signed 4) -1

-1 104 (unsigned 4) ****

0 4 (signed 4) 0

0 0 (unformatted) 0

1000 6 (signed 6) 1000

The maximum length of the string is 15. This instruction is usually followed by a READSTR

instruction to read the string.

LTST Long integer bit test
Opcode: A4 nn where: nn is a register number

Description: status = status(reg[A] AND reg[nn])

Sets the internal status byte based on the result of a bitwise AND of the values in register A and

register nn. The values of register A and register nn are not changed. The status byte can be read

with the READSTATUS instruction. It is set as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z

Bit 1 Sign Set if the MSB of the result is set

Bit 0 Zero Set the result is zero

LTST0 Long integer bit test register 0
Opcode: AD

Description: status = status(reg[A] AND reg[0])

Sets the internal status byte based on the result of a bitwise AND of the value in register A and

register 0. The values of register A and register 0 are not changed. The status byte can be read with

the READSTATUS instruction. It is set as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z

Bit 1 Sign Set if the MSB of the result is set

Bit 0 Zero Set the result is zero

LTSTI Long integer bit test using immediate value
Opcode: B6 bb where: bb is a signed byte value (0 to 255)

Description: status = status(reg[A] AND long(bb))

The unsigned byte value is converted to long integer and the internal status byte is set based on the

result of a bitwise AND of the converted value and register A. The value of register A is not

changed. The status byte can be read with the READSTATUS instruction. It is set as follows:

1 - - - - -

7 6 5 4 3 2 1 0Bit

- Z
Bit 0 Zero Set if the result is zero

Micromega Corporation 45 uM-FPU V3.1 Instruction Set

Micromega Corporation 46 uM-FPU V3.1 Instruction Set

Micromega Corporation 47 uM-FPU V3.1 Instruction Set

LUCMP Unsigned long integer compare
Opcode: A3 nn where: nn is a register number

Description: status = compare(reg[A] - reg[nn])

Compares the unsigned long integer value in register A with register nn and sets the internal status

byte. The status byte can be read with the READSTATUS instruction. It is set as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z

Bit 1 Sign Set if reg[A] < reg[nn]

Bit 0 Zero Set if reg[A] = reg[nn]

If neither Bit 0 or Bit 1 is set, reg[A] > reg[nn]

LUCMP0 Unsigned long integer compare register 0
Opcode: AC

Description: status = compare(reg[A] - reg[0])

Compares the unsigned long integer value in register A with register 0 and sets the internal status

byte. The status byte can be read with the READSTATUS instruction. It is set as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z

Bit 1 Sign Set if reg[A] < reg[0]

Bit 0 Zero Set if reg[A] = reg[0]

If neither Bit 0 or Bit 1 is set, reg[A] > reg[0]

LUCMP2 Unsigned long integer compare
Opcode: BA nn mm where: nn and mm are register numbers

Description: status = compare(reg[nn] - reg[mm])

Compares the signed long integer value in register nn with the signed long integer value in

register mm and sets the internal status byte. The status byte can be read with the READSTATUS

instruction. It is set as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z

Bit 1 Sign Set if reg[nn] < reg[mm]

Bit 0 Zero Set if reg[nn] = reg[mm]

If neither Bit 0 or Bit 1 is set, reg[nn] > reg[mm]

LUCMPI Unsigned long integer compare immediate value
Opcode: B5 bb where: bb is an unsigned byte value (0 to 255)

Description: status = compare(reg[A] - long(bb))

The unsigned byte value is converted to long integer and compared to register A. The status byte

can be read with the READSTATUS instruction. It is set as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z
Bit 1 Sign Set if reg[A] < long(bb)

Bit 0 Zero Set if reg[A] = long(bb)

Micromega Corporation 46 uM-FPU V3.1 Instruction Set

Micromega Corporation 47 uM-FPU V3.1 Instruction Set

Micromega Corporation 48 uM-FPU V3.1 Instruction Set

If neither Bit 0 or Bit 1 is set, reg[A] > long(bb)

LUDIV Unsigned long integer divide
Opcode: A2 nn where: nn is a register number

Description: reg[A] = reg[A] / reg[nn], reg[0] = remainder, status = status(reg[A])

The unsigned long integer value in register A is divided by register nn, and the result is stored in

register A. The remainder is stored in register 0.

Special Cases: • if register nn is zero, the result is the largest unsigned long integer ($FFFFFFFF)

LUDIV0 Unsigned long integer divide by register 0
Opcode: AB

Description: reg[A] = reg[A] / reg[0] , reg[0] = remainder, status = status(reg[A])

The unsigned long integer value in register A is divided by the signed value in register 0, and the

result is stored in register A. The remainder is stored in register 0.

Special Cases: • if register 0 is zero, the result is the largest unsigned long integer ($FFFFFFFF)

LUDIVI Unsigned long integer divide by immediate value
Opcode: B4 bb where: bb is a signed byte value (0 to 255)

Description: reg[A] = reg[A] / long(bb) , reg[0] = remainder, status = status(reg[A])

The unsigned byte value is converted to a long integer and register A is divided by the converted

value. The result is stored in register A. The remainder is stored in register 0.

Special Cases: • if the signed byte value is zero, the result is the largest unsigned long integer ($FFFFFFFF)

LWRITE Write long integer value
Opcode: 90 nn b1,b2,b3,b4 where: nn is register number

b1, b2, b3, b4 is long integer value (b1 is MSB)

Description: reg[nn] = 32-bit long integer value, status = status(reg[nn])

The long integer value is stored in register nn.

LWRITE0 Write long integer value to register0
Opcode: 93 b1,b2,b3,b4 where: b1, b2, b3, b4 is long integer value (b1 is MSB)

Description: reg[0] = 32-bit long integer value, status = status(reg[0])

The long integer value is stored in register 0.

LWRITEA Write long integer value to register A
Opcode: 91 b1,b2,b3,b4 where: b1, b2, b3, b4 is long integer value (b1 is MSB)

Description: reg[A] = 32-bit long integer value, status = status(reg[A])

The long integer value is stored in register A.

LWRITEX Write long integer value to register X
Opcode: 92 b1,b2,b3,b4 where: b1, b2, b3, b4 is long integer value (b1 is MSB)

Micromega Corporation 47 uM-FPU V3.1 Instruction Set

Micromega Corporation 48 uM-FPU V3.1 Instruction Set

Micromega Corporation 49 uM-FPU V3.1 Instruction Set

Description: reg[X] = 32-bit long integer value, status = status(reg[X]), X = X + 1

The long integer value is stored in register X, and X is incremented to the next register.

LXOR Long integer XOR
Opcode: C2 nn where: nn is a register number

Description: reg[A] = reg[A] XOR reg[nn], status = status(reg[A])

The bitwise XOR of the values in register A and register nn is stored in register A.

MOP Matrix Operation
Opcode: 6E bb where: bb is the operation code

6E bb ic, i1…in ic is the index count

i1…in are the index values

Description: The operation code nn selects one of the following operations:

0 Scalar Set. Each element: MA[r,c] = reg[0]

1 Scalar Add. For each element: MA[r,c] = MA[r,c] + reg[0]

2 Scalar Subtract. For each element: MA[r,c] = MA[r,c] + reg[0]

3 Scalar Subtract (reverse). For each element: MA[r,c] = reg[0] - MA[r,c]

4 Scalar Multiply. For each element: MA[r,c] = MA[r,c] * reg[0]

5 Scalar Divide. For each element: MA[r,c] = MA[r,c] / reg[0]

6 Scalar Divide (reverse). For each element: MA[r,c] = reg[0] / MA[r,c]

7 Scalar Power. For each element: MA[r,c] = MA[r,c] ** reg[0]

8 Element-wise Set. Each element: MA[r,c] = MB[r,c]

9 Element-wise Add. For each element: MA[r,c] = MA[r,c] + MB[r,c]

10 Element-wise Subtract. For each element: MA[r,c] = MA[r,c] + MB[r,c]

11 Element-wise Subtract (reverse). For each element: MA[r,c] = MB[r,c] - MA[r,c]

12 Element-wise Multiply. For each element: MA[r,c] = MA[r,c] * MB[r,c]

13 Element-wise Divide. For each element: MA[r,c] = MA[r,c] / MB[r,c]

14 Element-wise Divide (reverse). For each element: MA[r,c] = MB[r,c] / MA[r,c]

15 Element-wise Power. For each element: MA[r,c] = MA[r,c] ** MB[r,c]

16 Matrix Multiply. Calculate: MA = MB * MC

17 Identity matrix. Set: MA = identity matrix

18 Diagonal matrix. Set: MA = diagonal matrix (reg[0] value stored on diagonal)

19 Transpose. Set: MA = transpose MB

20 Count. Set: reg[0] = count of all elements in MA

21 Sum. Set: reg[0] = sum of all elements in MA

22 Average. Set: reg[0] = average of all elements in MA

23 Minimum. Set: reg[0] = minimum of all elements in MA

24 Maximum Set: reg[0] = maximum of all elements in MA

25 Copy matrix A to matrix B

26 Copy matrix A to matrix C

27 Copy matrix B to matrix A

28 Copy matrix B to matrix C

29 Copy matrix C to matrix A

30 Copy matrix C to matrix B

31 Matrix Determinant: reg[0] = determinant of MA (2x2 and 3x3 matrices only)

32 Matrix Inverse: MA = inverse of MB (2x2 and 3x3 matrices only)

33 Indexed Load Registers to Matrix A : MOP,33,ic,i1...in

Micromega Corporation 48 uM-FPU V3.1 Instruction Set

Micromega Corporation 49 uM-FPU V3.1 Instruction Set

Micromega Corporation 50 uM-FPU V3.1 Instruction Set

34 Indexed Load Registers to Matrix B : MOP,34,ic,i1...in

35 Indexed Load Registers to Matrix C : MOP,35,ic,i1...in

36 Indexed Load Matrix B to Matrix A: MOP,36,ic,i1...in

37 Indexed Load Matrix C to Matrix A: MOP,37,ic,i1...in

38 Indexed Save Matrix A to Register: MOP,38,ic,i1...in

39 Indexed Save Matrix A to Matrix B: MOP,39,ic,i1...in

40 Indexed Save Matrix A to Matrix C: MOP,40,ic,i1...in

The Indexed Load Registers operations take a list of register numbers and sequentially copy the

indexed register values to the matrix specified. The Indexed Load Matrix operations take a list of

matrix indexes and sequentially copy the indexed matrix values to Matrix A. The Indexed Save

operations take a list of register numbers or matrix indices and sequentially copy the values from

matrix A to registers, matrix B, or matrix C. These operations can be used to quickly load matrices

and save results, or to extract and save matrix subsets.

Special Cases: • Indexed Load Register: register 0 is cleared to zero before the indexed values are copied, to

provide an easy way to load zero values to a matrix.

• Indexed Load Register: if index is negative, the absolute value is used as an index, and the

negative of the indexed value is copied.

• Indexed Load Matrix: an index of 0x80 is used to copy the negative of the value at index 0.

• Indexed Save Matrix: if index value is negative, the matrix A value for that index position is not

stored.

NOP No operation
Opcode: 00

Description: No operation.

PICMODE Select PIC floating point format
Opcode: F5

Description: Selects the alternate PIC floating point mode using by many PIC compilers. All internal data on

the uM-FPU is stored in IEEE 754 format, but when the uM-FPU is in PIC mode an automatic

conversion is done by the FREAD, FREADA, FREADX, FWRITE, FWRITEA, and FWRITEX

instructions so the PIC program can use floating point data in the alternate format. Normally this

instruction would be issued immediately after the reset as part of the initialization code. The

IEEEMODE instruction can be used to revert to standard IEEE 754 floating point mode.

POLY A = nth order polynomial
Opcode: 88 tc t1…tn where: tc is the number of coefficient values

t1…tn are 32-bit floating point values

Description: reg[A] = result of nth order polynomial calculation

This instruction is only valid in a user-defined function in Flash memory or EEPROM memory.

The value of the specified polynomial is calculated and stored in register A. The general form of

the polynomial is:

 y = A0 + A1x
1 + A2x

2 + … Anx
n

The value of x is the initial value of register A. An nth order polynomial will have n+1 coefficients

Micromega Corporation 49 uM-FPU V3.1 Instruction Set

Micromega Corporation 50 uM-FPU V3.1 Instruction Set

Micromega Corporation 51 uM-FPU V3.1 Instruction Set

stored in the table. The coefficient values A0, A1, A2, … are stored as a series of 32-bit floating

point values (4 bytes) stored in order from An to A0. If a given term in the polynomial is not

needed, a zero must be is stored for that value.

Example: The polynomial 3x + 5 would be represented as follows:

88 02 40 A0 00 00 40 40 00 00

Where: 88 opcode

02 size of the table (order of the polynomial + 1)

40 40 00 00 floating point constant 3.0

40 A0 00 00 floating point constant 5.0

RADIANS Convert degrees to radians
Opcode: 4F

Description: reg[A] = radians(reg[A])

The floating point value in register A is converted from degrees to radians and the result is stored

in register A.

Special Cases: • if the value is NaN, then the result is NaN

RDBLK Read multiple 32-bit point values (new V3.1)
Opcode: 71 tc where: tc is the number of 32-bit values to read

Description: Return tc 32-bit values from reg[X], X = X+1

This instruction is used to read multiple 32-bit values from the uM-FPU registers. The byte

immediately following the opcode is the transfer count, and bits 6:0 specify the number of 32-bit

values that follow (a value of zero specifies a transfer count of 128). If bit 7 of the transfer count is

set, the bytes are reversed for each 32-bit value that follows. This allows for efficient data transfers

when the native storage format of the microcontroller is the reverse of the uM-FPU format. The X

register specifies the register to read from, and it is incremented after each 32-bit value is read.

Special Cases: • the X register will not increment past the maximum register value of 127

• if PICMODE is enabled, the 32-bit values are assumed to be floating point values

READSEL Read string selection
Opcode: EC

Returns: aa...00 where: aa...00 is a zero-terminated string

Description: Returns the current string selection. Data bytes must be read immediately following this

instruction and continue until a zero byte is read. This instruction is typically used after STRSEL

or STRFIELD instructions.

READSTATUS Return the last status byte

Opcode: F1

Returns: ss where: ss is the status byte

Description: The 8-bit internal status byte is returned.

Micromega Corporation 50 uM-FPU V3.1 Instruction Set

Micromega Corporation 51 uM-FPU V3.1 Instruction Set

Micromega Corporation 52 uM-FPU V3.1 Instruction Set

READSTR Read string
Opcode: F2

Returns: aa...00 where: aa...00 is a zero-terminated string

Description: Returns the zero terminated string in the string buffer. Data bytes must be read immediately

following this instruction and continue until a zero byte is read. This instruction is used after

instructions that load the string buffer (e.g. FTOA, LTOA, VERSION). On completion of the

READSTR instruction the string selection is set to select the entire string.

READVAR Read internal variable (modified V3.1)
Opcode: FC bb where: bb is index of internal register

Description: reg[0] = internal register value, status = status(reg[0])

Sets register 0 to the current value of one of the internal registers (based on index value passed).

0 A register

1 X register

2 Matrix A register

3 Matrix A rows

4 Matrix A columns

5 Matrix B register

6 Matrix B rows

7 Matrix B columns

8 Matrix C register

9 Matrix C rows

10 Matrix C columns

11 internal mode word

12 last status byte

13 clock ticks per millisecond

14 current length of string buffer

15 string selection starting point

16 string selection length

17 8-bit character at string selection point

18 number of bytes in instruction buffer

RESET Reset
Opcode: FF

Description: Nine consecutive FF bytes will cause the uM-FPU to reset. If less then nine consecutive FF bytes

are received, they are treated as NOPs.

RET Return from user-defined function

Opcode: 80

Description: This instruction is only valid in a user-defined function in Flash memory or EEPROM memory. It

causes a return from the current function. Execution will continue with the instruction following

the last function call. This instruction is required as the last instruction of a user-defined function

in EEPROM memory.

Micromega Corporation 51 uM-FPU V3.1 Instruction Set

Micromega Corporation 52 uM-FPU V3.1 Instruction Set

Micromega Corporation 53 uM-FPU V3.1 Instruction Set

RET,cc Conditional return from user-defined function (new V3.1)
Opcode: 8A cc where: cc is the test condition

Description: This instruction is only valid in a user-defined function in Flash memory or EEPROM memory. If

the test condition is true, it causes a return from the current function, and execution will continue

with the instruction following the last function call. If the test condition is false, execution

continues with the next instruction.

RIGHT Right Parenthesis
Opcode: 15

Description: The right parenthesis command copies the value of register A (the current temporary register) to

register 0. If the right parenthesis is the outermost parenthesis, the register A selection from before

the first left parenthesis is restored, otherwise the previous temporary register is selected as

register. Used together with the left parenthesis command to allocate temporary registers, and to

change the order of a calculation. Parentheses can be nested up to eight levels.

Special Cases: • if no left parenthesis is currently outstanding, then register 0 is set to NaN. ($7FFFFFFF).

ROOT Calculate nth root
Opcode: 42 nn where: nn is a register number

Description: reg[A] = reg[A] ** (1 / reg[nn])

Calculates the nth root of the floating point value in register A and stores the result in register A.

Where the value n is equal to the floating point value in register nn. It is equivalent to raising A to

the power of (1 / nn).

Special Cases: • see the description of the POWER instruction for the special cases of (1/reg[nn])

• if reg[nn] is infinity, then (1 / reg[nn]) is zero

• if reg[nn] is zero, then (1 / reg[nn]) is infinity

ROUND Floating point Rounding
Opcode: 53

Description: reg[A] = round(reg[A])

The floating point value equal to the nearest integer to the floating point value in register A is

stored in register A.

Special Cases: • if the value is NaN, then the result is NaN

• if the value is +infinity or -infinity, then the result is +infinity or -infinity

• if the value is 0.0 or –0.0, then the result is 0.0 or –0.0

SAVEIND Save Indirect
Opcode: 7B nn where: nn is a register number

Description: reg[reg[nn]] = reg[A]

The value of register A is stored in the register whose register number is contained in register nn.

The value in register nn is assumed to be long integer.

Micromega Corporation 52 uM-FPU V3.1 Instruction Set

Micromega Corporation 53 uM-FPU V3.1 Instruction Set

Micromega Corporation 54 uM-FPU V3.1 Instruction Set

Special Cases: If the value in register nn > 127, register 127 is used.

SAVEMA Save register A value to matrix A
Opcode: 6B b1 b2 where: b1 selects the row and b2 selects the column of matrix A

Description: matrix A [b1, b2] = reg[A]

Store the register A value to matrix A at the row, column specified.

Special Cases: If the row or column is out of range, no value is stored

SAVEMB Save register A value to matrix B
Opcode: 6C b1 b2 where: b1 selects the row and b2 selects the column of matrix B

Description: matrix A [b1, b2] = reg[A]

Store the register A value to matrix B at the row, column specified.

Special Cases: If the row or column is out of range, no value is stored

SAVEMC Save register A value to matrix C
Opcode: 6D b1 b2 where: b1 selects the row and b2 selects the column of matrix C

Description: matrix A [b1, b2] = reg[A]

Store the register A value to matrix C at the row, column specified.

Special Cases: If the row or column is out of range, no value is stored

SELECTA Select A

Opcode: 01 nn where: nn is a register number

Description: A = nn

The value nn is used to select register A.

SELECTMA Select matrix A

Opcode: 65 nn b1 b2 where: nn is a register number

b1 is the number of rows, b2 is number of columns

Description: Select matrix A, X = nn

The value nn is used to select a register that is the start of matrix A. Matrix values are stored in

sequential registers (rows * columns). The upper four bits of the rc value specify the number of

rows, and the lower four bits specify the number of columns (a row or column value of zero is

interpreted as 16). The X register is also set to the first element of the matrix so that the FREADX,

FWRITEX, LREADX, LWRITEX, SAVEX, SETX, LOADX instructions can be immediately

used to store values to or retrieve vales from the matrix.

SELECTMB Select matrix B

Opcode: 66 nn b1 b2 where: nn is a register number

b1 is the number of rows, b2 is number of columns

Description: Select matrix B, X = nn

The value nn is used to select a register that is the start of matrix B. Matrix values are stored in

Micromega Corporation 53 uM-FPU V3.1 Instruction Set

Micromega Corporation 54 uM-FPU V3.1 Instruction Set

Micromega Corporation 55 uM-FPU V3.1 Instruction Set

sequential registers (rows * columns). The upper four bits of the rc value specify the number of

rows, and the lower four bits specify the number of columns (a row or column value of zero is

interpreted as 16). The X register is also set to the first element of the matrix so that the FREADX,

FWRITEX, LREADX, LWRITEX, SAVEX, SETX, LOADX instructions can be immediately

used to store values to or retrieve vales from the matrix.

SELECTMC Select matrix C

Opcode: 67 nn b1 b2 where: nn is a register number

b1 is the number of rows, b2 is number of columns

Description: Select matrix C, X = nn

The value nn is used to select a register that is the start of matrix B. Matrix values are stored in

sequential registers (rows * columns). The upper four bits of the rc value specify the number of

rows, and the lower four bits specify the number of columns (a row or column value of zero is

interpreted as 16). The X register is also set to the first element of the matrix so that the FREADX,

FWRITEX, LREADX, LWRITEX, SAVEX, SETX, LOADX instructions can be immediately

used to store values to or retrieve vales from the matrix.

SELECTX Select register X

Opcode: 02 nn where: nn is a register number

Description: X = nn

The value nn is used to select register X.

SERIN Serial input (new V3.1)
Opcode: CF bb where: bb specifies the type of operation

Description: This instruction is used to read serial data from the SERIN pin. The instruction is ignored if Debug

Mode is enabled. The baud rate for serial input is the same as the baud rate for serial output, and is

set with the SEROUT,0 instruction. The operation to be performed is specified by the byte

immediately following the opcode:

0 Disable serial input

1 Enable character mode serial input

2 Get character mode serial input status

3 Get serial input character

4 Enable NMEA serial input

5 Get NMEA input status

6 Transfer NMEA sentence to string buffer

SERIN,0

Disable serial input. This can be used to save interrupt processing time if serial input is not used

continuously.

SERIN,1

Enable character mode serial input. Serial input is enabled, and incoming characters are stored in a

160 byte buffer. The serial input status can be checked with the SERIN,2 instruction and input

characters can be read using the SERIN,3 instruction.

SERIN,2

Get character mode serial input status. The status byte is set to zero (Z) if the input buffer is empty,

Micromega Corporation 54 uM-FPU V3.1 Instruction Set

Micromega Corporation 55 uM-FPU V3.1 Instruction Set

Micromega Corporation 56 uM-FPU V3.1 Instruction Set

or non-zero (NZ) if the input buffer is not empty.

SERIN,3

 Get serial input character. The serial input character is returned in register 0. If this instruction is

the last instruction in the instruction buffer, it will wait for the next available input character. It

there are other instructions in the instruction buffer, or another instruction is sent before the

SERIN,3 instruction has completed, it will terminate and return a zero value.

SERIN,4

 Enable NMEA serial input. Serial input is enabled, and the serial input data is scanned for NMEA

sentences which are then stored in a 200 byte buffer. Additional NMEA sentences can be buffered

while the current sentence is being processed. The sentence prefix character ($), trailing checksum

characters (if specified), and the terminator (CR,LF) are not stored in the buffer. NMEA sentences

are transferred to the string buffer for processing using the SERIN,6 instruction, and the NMEA

input status can be checked with the SERIN,5 instruction.

SERIN,5

Get the NMEA input status. The status byte is set to zero (Z) if the buffer is empty, or non-zero

(NZ) if at least one NMEA sentence is available in the buffer.

SERIN,6

Transfer NMEA sentence to string buffer. This instruction transfers the next NMEA sentence to

the string buffer, and selects the first field of the string so that a STRCMP instruction can be used to

check the sentence type. If the sentence is valid, the status byte is set to 0x80 and the greater-than

(GT) test condition will be true. If an error occurs, the status byte will be set to 0x82, 0x92,

0xA2, or 0xB2. Bit 4 of the status byte is set if an overrun error occurred. Bit 5 of the status byte

is set if a checksum error occurred. The less-than (LT) test condition will be true for all errors. If

this instruction is the last instruction in the instruction buffer, it will wait for the next available

NMEA sentence. It there are other instructions in the instruction buffer, or another instruction is

sent before the SERIN,6 instruction has completed, it will terminate and return an empty

sentence.

SEROUT Serial Output (new V3.1)
Opcode: CE bb where: bb specifies the type of operation

CE bb bd bd specifies the I/O mode and baud rate

CE bb aa…00 aa…00 is a zero-terminated string

Description: This instruction is used to set the serial input/output mode and baud rate, and to send serial data to

the SEROUT pin. The operation to be performed is specified by the byte immediately following

the opcode:

0 Set serial I/O mode and baud rate

1 Send text string to serial output

2 Send string buffer to serial output

3 Send string selection to serial output

4 Send lower 8 bits of register 0 to serial output

5 Send text string and zero terminator to serial output

SEROUT,0,bb

This instruction sets the baud rate for serial input/output, and enables or disables Debug Mode.

Micromega Corporation 55 uM-FPU V3.1 Instruction Set

Micromega Corporation 56 uM-FPU V3.1 Instruction Set

Micromega Corporation 57 uM-FPU V3.1 Instruction Set

The mode is specified by the byte immediately following the operation code:

0 57,600 baud, Debug Mode enabled

1 300 baud, Debug Mode disabled

2 600 baud, Debug Mode disabled

3 1200 baud, Debug Mode disabled

4 2400 baud, Debug Mode disabled

5 4800 baud, Debug Mode disabled

6 9600 baud, Debug Mode disabled

7 19200 baud, Debug Mode disabled

8 38400 baud, Debug Mode disabled

9 57600 baud, Debug Mode disabled

10 115200 baud, Debug Mode disabled

For mode 0, a {DEBUG ON} message is sent to the serial output and the baud rate is changed.

For modes 1 to 10, if the debug mode is enabled, a {DEBUG OFF} message is sent to the serial

output before the baud rate is changed.

SEROUT,1,aa..00

The text string specified by the instruction (not including the zero-terminator) is sent to the serial

output. The instruction is ignored if Debug Mode is enabled.

SEROUT,2

The contents of the string buffer are sent to the serial output. The instruction is ignored if Debug

Mode is enabled.

SEROUT,3

The current string selection is sent to the serial port. The instruction is ignored if Debug Mode is

enabled.

SEROUT,4

The lower 8 bits of register 0 are sent to the serial port as an 8-bit character. The instruction is

ignored if Debug Mode is enabled.

SEROUT,5,aa..00

The text string specified by the instruction (including the zero-terminator) is sent to the serial

output. The instruction is ignored if Debug Mode is enabled.

SETOUT Set output

Opcode: D0 nn where: nn is a command byte

Description: Set the OUT0 or OUT1 output pin according to the command byte nn as follows:

Pin

7 6 5 4 3 2 1 0Bit

Action

Bits 4-7 Output pin (upper nibble)

0 - OUT 0

1 - OUT 1

Bits 0-3 Action (lower nibble)

0 - set output low

Micromega Corporation 56 uM-FPU V3.1 Instruction Set

Micromega Corporation 57 uM-FPU V3.1 Instruction Set

Micromega Corporation 58 uM-FPU V3.1 Instruction Set

1 - set output high

2 - toggle the output to opposite level

3 - set output to high impedance

SETSTATUS Set status byte (new V3.1)
Opcode: CD bb where: ss is status value

Description: The internal status byte is set to the 8-bit value specified.

SIN Sine
Opcode: 47

Description: reg[A] = sin(reg[A])

Calculates the sine of the angle (in radians) in register A and stored the result in register A.

Special Cases: • if A is NaN or an infinity, then the result is NaN

• if A is 0.0, then the result is 0.0

• if A is –0.0, then the result is –0.0

SQRT Square root
Opcode: 41

Description: reg[A] = sqrt(reg[A])

Calculates the square root of the floating point value in register A and stored the result in register

A.

Special Cases: • if the value is NaN or less than zero, then the result is NaN

• if the value is +infinity, then the result is +infinity

• if the value is 0.0 or –0.0, then the result is 0.0 or –0.0

STRBYTE Insert byte at string selection (new V3.1)
Opcode: ED

Description: The lower 8 bits of register 0 are stored as an 8-bit character in the string buffer at the current

selection point. The selection point is updated to point immediately after the stored byte, so

multiple bytes can be appended.

STRCMP Compare string with string selection

Opcode: E6 aa...00 where: aa...00 is a zero-terminated string

Description: The string is compared with the string at the current selection point and the internal status byte is

set. The status byte can be read with the READSTATUS instruction. It is set as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z

Bit 1 Sign Set if string selection < specified string

Bit 0 Zero Set if string selection = specified string

If neither Bit 0 or Bit 1 is set, string selection > specified string

STRDEC Decrement string selection point (new V3.1)

Micromega Corporation 57 uM-FPU V3.1 Instruction Set

Micromega Corporation 58 uM-FPU V3.1 Instruction Set

Micromega Corporation 59 uM-FPU V3.1 Instruction Set

Opcode: EF

Description: The string selection point is incremented and the selection length is set to zero.

Special Cases: • the selection point will not decrement past the beginning of the string

STRFCHR Set field separator characters

Opcode: E8 aa...00 where: aa...00 is a zero-terminated string

Description: The string specifies a list of characters to be used as field separators. The default field separator is

a comma.

STRFIELD Find field in string (modified V3.1)
Opcode: E9 bb where: bb is the field number

Description: The selection point is set to the specified field. Fields are numbered from 1 to n, and are separated

by the characters specified by the last STRFCHR instruction. If no STRFCHR instruction has been

executed, the default field separator is a comma. If bit 7 of bb is set, then bits 6:0 of bb specify a

register number, and the lower 8 bits of the register specify the field number.

Special Cases: • if bb = 0, selection point is set to the start of the string buffer

• if bb > number of fields, selection point is set to the end of the string buffer

STRFIND Find string in the string buffer (modified V3.1)
Opcode: E7 aa...00 where: aa...00 is a zero-terminated string

Description: Search the string selection for the first occurrence of the specified string. If the string is found, the

selection point is set to the matching substring. If the string is not found, the selection point is set

to the end of the string selection.

STRINC Increment string selection point (new V3.1)
Opcode: EE

Description: The string selection point is incremented and the selection length is set to zero.

Special Cases: • the selection point will not increment past the end of the string

STRINS Insert string

Opcode: E5 aa...00 where: aa...00 is a zero-terminated string

Description: Insert the string in the string buffer at the current selection point. The selection point is updated to

point immediately after the inserted string, so multiple insertions can be appended.

STRSEL Set string selection point (modified V3.1)
Opcode: E4 nn mm where: nn is the start of the selection

mm is the length of the selection

Micromega Corporation 58 uM-FPU V3.1 Instruction Set

Micromega Corporation 59 uM-FPU V3.1 Instruction Set

Micromega Corporation 60 uM-FPU V3.1 Instruction Set

Description: Set the start of the string selection to character nn and the length of the selection to mm characters.

Characters are numbered from 0 to n. If bit 7 of nn is set, then bits 6:0 of nn specify a register

number, and the lower 8 bits of the register specify the start of the selection. If bit 7 of mm is set,

then bits 6:0 of mm specify a register number, and the lower 8 bits of the register specify the length

of the selection.

Special Cases: • if nn > string length, start of selection is set to end of string

• if nn+mm > string length, selection is adjusted for the end of string

STRSET Copy string to string buffer

Opcode: E3 aa...00 where: aa...00 is a zero-terminated string

Description: Copy the string to the string buffer and set the selection point to the end of the string.

Special Cases: • if nn > string length, start of selection is set to end of string

STRTOF Convert string selection to floating point

Opcode: EA

Description: Convert the string at the current selection point to a floating point value and store the result in

register 0.

STRTOL Convert string selection to long integer

Opcode: EB

Description: Convert the string at the current selection point to a long integer value and store the result in

register 0.

SWAP Swap registers
Opcode: 12 nn mm where: nn and mm are register numbers

Description: tmp = reg[nn], reg[nn] = reg[mm], reg[mm] = tmp

The values of register nn and register mm are swapped.

SWAPA Swap register A
Opcode: 13 nn where: nn is a register number

Description: tmp = reg[nn], reg[nn] = reg[A], reg[A] = tmp

The values of register nn and register A are swapped.

SYNC Synchronization
Opcode: F0

Returns: 5C

Description: A sync character (0x5C) is sent in reply. This instruction is typically used after a reset to verify

communications.

TABLE Table lookup

Micromega Corporation 59 uM-FPU V3.1 Instruction Set

Micromega Corporation 60 uM-FPU V3.1 Instruction Set

Micromega Corporation 61 uM-FPU V3.1 Instruction Set

Opcode: 85 tc t1…tn where: tc is the size of the table

t1…tn are 32-bit floating point or integer values

Description: reg[A] = value from table indexed by reg[0]

This opcode is only valid within a user function stored in the uM-FPU Flash memory or EEPROM

memory. The value of the item in the table, indexed by register 0, is stored in register A. The first

byte after the opcode specifies the size of the table, followed by groups of four bytes representing

the 32-bit values for each item in the table. This instruction can be used to load either floating

point values or long integer values. The long integer value in register 0 is used as an index into the

table. The index number for the first table entry is zero.

Special Cases: • if reg[0] <= 0, then the result is item 0

• if reg[0] > maximum size of table, then the result is the last item in the table

TAN Tangent
Opcode: 49

Description: reg[A] = tan(reg[A])

Calculates the tangent of the angle (in radians) in register A and stored the result in register A.

Special Cases: • if reg[A] is NaN or an infinity, then the result is NaN

• if reg[A] is 0.0, then the result is 0.0

• if reg[A] is –0.0, then the result is –0.0

TICKLONG Load register 0 with millisecond ticks
Opcode: D9

Description: reg[0] = ticks

Load register 0 with the ticks (in milliseconds).

TIMELONG Load register 0 with time value in seconds
Opcode: D8

Operation: reg[0] = time

Description: Load register 0 with the time (in seconds).

TIMESET Set time value in seconds
Opcode: D7

Description: time = reg[0], ticks = 0

The time (in seconds) is set from the value in register 0. The ticks (in milliseconds) is set to zero.

Special Cases: • if reg[0] is -1, the timer is turned off.

TRACEOFF Turn debug trace off
Opcode: F8

Description: Used with the built-in debugger. If the debugger is not enabled, this instruction is ignored. Debug

tracing is turned off, and a {TRACE OFF} message is sent to the serial output.

Micromega Corporation 60 uM-FPU V3.1 Instruction Set

Micromega Corporation 61 uM-FPU V3.1 Instruction Set

Micromega Corporation 62 uM-FPU V3.1 Instruction Set

TRACEON Turn debug trace on
Opcode: F9

Description: Used with the built-in debugger. If the debugger is not enabled, this instruction is ignored. Debug

tracing is turned on, and a {TRACE ON} message is sent to the serial output. The debug terminal

will display a trace of all instructions executed until tracing is turned off.

TRACEREG Display register value in debug trace
Opcode: FB nn where: nn is a register number

Description: Used with the built-in debugger. If the debugger is not enabled, this instruction is ignored. If the

debugger is enabled, the value of register nn will be displayed on the debug terminal.

TRACESTR Display debug trace message
Opcode: FA aa…00 where: aa…00 is a zero-terminated string

Description: Used with the built-in debugger. If the debugger is not enabled, this instruction is ignored. If the

debugger is enabled, a message will be displayed on the debug terminal. The zero terminated

ASCII string to be displayed is sent immediately following the opcode.

VERSION Copy the version string to the string buffer (modified V3.1)
Opcode: F3

Description: The uM-FPU V3.1 version string is copied to the string buffer at the current selection point, and

the version code is copied to register 0. The version code is represented as follows:

7 6 5 4 3 2 1 0

BetaMinor

15 14 13 12 11 10 9 8Bit

Major3

Bits 12-15 Chip Version (always set to 3)

Bits 8-11 Major Version

Bits 4-7 Minor Version

Bits 0-3 Beta Version

As an example, for the uM-FPU V3.1.3 general release:

version string: uM-FPU V3.1

version code: 0x3130

WRBLK Write multiple 32-bit values (new V3.1)
Opcode: 70 tc t1…tn where: tc is the number of 32-bit values to write

t1…tn are 32-bit values

Description: reg[X] = t, X = X+1, for t = t0 to tn

This instruction is used to write multiple 32-bit values to the uM-FPU registers. The byte

immediately following the opcode is the transfer count, and bits 6:0 specify the number of 32-bit

values that follow (a value of zero specifies a transfer count of 128). If bit 7 of the transfer count is

set, the bytes are reversed for each 32-bit value that follows. This allows for efficient data transfers

when the native storage format of the microcontroller is the reverse of the uM-FPU format. The X

register specifies the register to write to, and it is incremented after each 32-bit value is written.

Special Cases: • the X register will not increment past the maximum register value of 127

• if PICMODE is enabled, the 32-bit values are assumed to be floating point values

Micromega Corporation 61 uM-FPU V3.1 Instruction Set

Micromega Corporation 62 uM-FPU V3.1 Instruction Set

Micromega Corporation 63 uM-FPU V3.1 Instruction Set

XSAVE Save register nn to register X

Opcode: 0E nn where: nn is a register number

Description: reg[X] = reg[nn], X = X + 1

Set register X to the value of register nn, and select the next register in sequence as register X.

Special Cases: • the X register will not increment past the maximum register value of 127

XSAVEA Save register A to register X

Opcode: 0F

Description: reg[X] = reg[A], X = X + 1

Set register X to the value of register A, and select the next register in sequence as register X.

Special Cases: • the X register will not increment past the maximum register value of 127

Micromega Corporation 62 uM-FPU V3.1 Instruction Set

Micromega Corporation 63 uM-FPU V3.1 Instruction Set

Micromega Corporation 64 uM-FPU V3.1 Instruction Set

Appendix A

uM-FPU V3.1 Instruction Summary

Instruction Opcode Arguments Returns Description

NOP

SELECTA

SELECTX

CLR

CLRA

CLRX

CLR0

COPY

COPYA

COPYX

LOAD

LOADA

LOADX

ALOADX

XSAVE

XSAVEA

COPY0

COPYI

SWAP

SWAPA

LEFT

RIGHT

FWRITE

FWRITEA

FWRITEX

FWRITE0

FREAD

FREADA

FREADX

FREAD0

ATOF

FTOA

FSET

FADD

FSUB

FSUBR

FMUL

FDIV

FDIVR

FPOW

FCMP

FSET0

FADD0

FSUB0

00

01

02

03

04

05

06

07

08

09

0A

0B

0C

0D

0E

0F

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

1D

1E

1F

20

21

22

23

24

25

26

27

28

29

2A

2B

nn

nn

nn

mm,nn

nn

nn

nn

nn

nn

bb,nn

nn,mm

nn

nn,b1,b2,b3,b4

b1,b2,b3,b4

b1,b2,b3,b4

b1,b2,b3,b4

nn

aa…00

bb

nn

nn

nn

nn

nn

nn

nn

nn

nn

b1,b2,b3,b4

b1,b2,b3,b4

b1,b2,b3,b4

b1,b2,b3,b4

No Operation

Select register A

Select register X

reg[nn] = 0

reg[A] = 0

reg[X] = 0, X = X + 1

reg[0] = 0

reg[nn] = reg[mm]

reg[nn] = reg[A]

reg[nn] = reg[X], X = X + 1

reg[0] = reg[nn]

reg[0] = reg[A]

reg[0] = reg[X], X = X + 1

reg[A] = reg[X], X = X + 1

reg[X] = reg[nn], X = X + 1

reg[X] = reg[A], X = X + 1

reg[nn] = reg[0]

reg[nn] = long(unsigned byte bb)

Swap reg[nn] and reg[mm]

Swap reg[nn] and reg[A]

Left parenthesis

Right parenthesis

Write 32-bit floating point to reg[nn]

Write 32-bit floating point to reg[A]

Write 32-bit floating point to reg[X]

Write 32-bit floating point to reg[0]

Read 32-bit floating point from reg[nn]

Read 32-bit floating point from reg[A]

Read 32-bit floating point from reg[X]

Read 32-bit floating point from reg[0]

Convert ASCII to floating point

Convert floating point to ASCII

reg[A] = reg[nn]

reg[A] = reg[A] + reg[nn]

reg[A] = reg[A] - reg[nn]

reg[A] = reg[nn] - reg[A]

reg[A] = reg[A] * reg[nn]

reg[A] = reg[A] / reg[nn]

reg[A] = reg[nn] / reg[A]

reg[A] = reg[A] ** reg[nn]

Compare reg[A], reg[nn],

Set floating point status

reg[A] = reg[0]

reg[A] = reg[A] + reg[0]

reg[A] = reg[A] - reg[0]

Micromega Corporation 63 uM-FPU V3.1 Instruction Set

Micromega Corporation 64 uM-FPU V3.1 Instruction Set

Micromega Corporation 65 uM-FPU V3.1 Instruction Set

FSUBR0

FMUL0

FDIV0

FDIVR0

FPOW0

FCMP0

FSETI

FADDI

FSUBI

FSUBRI

FMULI

FDIVI

FDIVRI

FPOWI

FCMPI

FSTATUS

FSTATUSA

FCMP2

FNEG

FABS

FINV

SQRT

ROOT

LOG

LOG10

EXP

EXP10

SIN

COS

TAN

ASIN

ACOS

ATAN

ATAN2

DEGREES

RADIANS

FMOD

FLOOR

CEIL

ROUND

FMIN

FMAX

FCNV

FMAC

FMSC

LOADBYTE

LOADUBYTE

2C

2D

2E

2F

30

31

32

33

34

35

36

37

38

39

3A

3B

3C

3D

3E

3F

40

41

42

43

44

45

46

47

48

49

4A

4B

4C

4D

4E

4F

50

51

52

53

54

55

56

57

58

59

5A

bb

bb

bb

bb

bb

bb

bb

bb

bb

nn

nn,mm

nn

nn

nn

nn

nn

bb

nn,mm

nn,mm

bb

bb

reg[A] = reg[0] - reg[A]

reg[A] = reg[A] * reg[0]

reg[A] = reg[A] / reg[0]

reg[A] = reg[0] / reg[A]

reg[A] = reg[A] ** reg[0]

Compare reg[A], reg[0],

Set floating point status

reg[A] = float(bb)

reg[A] = reg[A] - float(bb)

reg[A] = reg[A] - float(bb)

reg[A] = float(bb) - reg[A]

reg[A] = reg[A] * float(bb)

reg[A] = reg[A] / float(bb)

reg[A] = float(bb) / reg[A]

reg[A] = reg[A] ** bb

Compare reg[A], float(bb),

Set floating point status

Set floating point status for reg[nn]

Set floating point status for reg[A]

Compare reg[nn], reg[mm]

Set floating point status

reg[A] = -reg[A]

reg[A] = | reg[A] |

reg[A] = 1 / reg[A]

reg[A] = sqrt(reg[A])

reg[A] = root(reg[A], reg[nn])

reg[A] = log(reg[A])

reg[A] = log10(reg[A])

reg[A] = exp(reg[A])

reg[A] = exp10(reg[A])

reg[A] = sin(reg[A])

reg[A] = cos(reg[A])

reg[A] = tan(reg[A])

reg[A] = asin(reg[A])

reg[A] = acos(reg[A])

reg[A] = atan(reg[A])

reg[A] = atan2(reg[A], reg[nn])

reg[A] = degrees(reg[A])

reg[A] = radians(reg[A])

reg[A] = reg[A] MOD reg[nn]

reg[A] = floor(reg[A])

reg[A] = ceil(reg[A])

reg[A] = round(reg[A])

reg[A] = min(reg[A], reg[nn])

reg[A] = max(reg[A], reg[nn])

reg[A] = conversion(bb, reg[A])

reg[A] = reg[A] + (reg[nn] * reg[mm])

reg[A] = reg[A] - (reg[nn] * reg[mm])

reg[0] = float(signed bb)

reg[0] = float(unsigned byte)

Micromega Corporation 64 uM-FPU V3.1 Instruction Set

Micromega Corporation 65 uM-FPU V3.1 Instruction Set

Micromega Corporation 66 uM-FPU V3.1 Instruction Set

LOADWORD

LOADUWORD

LOADE

LOADPI

LOADCON

FLOAT

FIX

FIXR

FRAC

FSPLIT

SELECTMA

SELECTMB

SELECTMC

LOADMA

LOADMB

LOADMC

SAVEMA

SAVEMB

SAVEMC

MOP

FFT

WRBLK

RDBLK

LOADIND

SAVEIND

INDA

INDX

FCALL

EECALL

RET

BRA

BRA,cc

JMP

JMP,cc

TABLE

FTABLE

LTABLE

POLY

GOTO

RET,cc

LWRITE

LWRITEA

LWRITEX

LWRITE0

LREAD

LREADA

5B

5C

5D

5E

5F

60

61

62

63

64

65

66

67

68

69

6A

6B

6C

6D

6E

6F

70

71

7A

7B

7C

7D

7E

7F

80

81

82

83

84

85

86

87

88

89

8A

90

91

92

93

94

95

b1,b2

b1,b2

bb

nn,bb,bb

nn,bb,bb

nn,bb,bb

bb,bb

bb,bb

bb,bb

bb,bb

bb,bb

bb,bb

bb

bb

tc,t1…tn

tc

nn

nn

nn

nn

fn

fn

bb

cc,bb

b1,b2

cc,b1,b2

tc,t1…tn

cc,tc,t1…tn

cc,tc,t1…tn

tc,t1…tn

nn

cc

nn,b1,b2,b3,b4

b1,b2,b3,b4

b1,b2,b3,b4

b1,b2,b3,b4

nn

t1…tn

b1,b2,b3,b4

b1,b2,b3,b4

reg[0] = float(signed b1*256 + b2)

reg[0] = float(unsigned b1*256 + b2)

reg[0] = 2.7182818

reg[0] = 3.1415927

reg[0] = float constant(bb)

reg[A] = float(reg[A])

reg[A] = fix(reg[A])

reg[A] = fix(round(reg[A]))

reg[A] = fraction(reg[A])

reg[A] = integer(reg[A]),

reg[0] = fraction(reg[A])

Select matrix A

Select matrix B

Select matrix C

reg[0] = Matrix A[bb, bb]

reg[0] = Matrix B[bb, bb]

reg[0] = Matrix C[bb, bb]

Matrix A[bb, bb] = reg[A]

Matrix B[bb, bb] = reg[A]

Matrix C[bb, bb] = reg[A]

Matrix/Vector operation

Fast Fourier Transform

Write multiple 32-bit values

Read multiple 32-bit values

reg[0] = reg[reg[nn]]

reg[reg[nn]] = reg[A]

Select register A using value in reg[nn]

Select register X using value in reg[nn]

Call user-defined function in Flash

Call user-defined function in EEPROM

Return from user-defined function

Unconditional branch

Conditional branch

Unconditional jump

Conditional jump

Table lookup

Floating point reverse table lookup

Long integer reverse table lookup

reg[A] = nth order polynomial

Computed GOTO

Conditional return from user-defined

function

Write 32-bit long integer to reg[nn]

Write 32-bit long integer to reg[A]

Write 32-bit long integer to reg[X],

X = X + 1

Write 32-bit long integer to reg[0]

Read 32-bit long integer from reg[nn]

Read 32-bit long value from reg[A]

Micromega Corporation 65 uM-FPU V3.1 Instruction Set

Micromega Corporation 66 uM-FPU V3.1 Instruction Set

Micromega Corporation 67 uM-FPU V3.1 Instruction Set

LREADX

LREAD0

LREADBYTE

LREADWORD

ATOL

LTOA

LSET

LADD

LSUB

LMUL

LDIV

LCMP

LUDIV

LUCMP

LTST

LSET0

LADD0

LSUB0

LMUL0

LDIV0

LCMP0

LUDIV0

LUCMP0

LTST0

LSETI

LADDI

LSUBI

LMULI

LDIVI

LCMPI

LUDIVI

LUCMPI

LTSTI

LSTATUS

LSTATUSA

96

97

98

99

9A

9B

9C

9D

9E

9F

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

AA

AB

AC

AD

AE

AF

B0

B1

B2

B3

B4

B5

B6

B7

B8

aa…00

bb

nn

nn

nn

nn

nn

nn

nn

nn

nn

bb

bb

bb

bb

bb

bb

bb

bb

bb

nn

b1,b2,b3,b4

b1,b2,b3,b4

bb

b1,b2

Read 32-bit long integer from reg[X],

X = X + 1

Read 32-bit long integer from reg[0]

Read lower 8 bits of reg[A]

Read lower 16 bits reg[A]

Convert ASCII to long integer

Convert long integer to ASCII

reg[A] = reg[nn]

reg[A] = reg[A] + reg[nn]

reg[A] = reg[A] - reg[nn]

reg[A] = reg[A] * reg[nn]

reg[A] = reg[A] / reg[nn]

reg[0] = remainder

Signed compare reg[A] and reg[nn],

Set long integer status

reg[A] = reg[A] / reg[nn]

reg[0] = remainder

Unsigned compare reg[A] and reg[nn],

Set long integer status

Test reg[A] AND reg[nn],

Set long integer status

reg[A] = reg[0]

reg[A] = reg[A] + reg[0]

reg[A] = reg[A] - reg[0]

reg[A] = reg[A] * reg[0]

reg[A] = reg[A] / reg[0]

reg[0] = remainder

Signed compare reg[A] and reg[0],

set long integer status

reg[A] = reg[A] / reg[0]

reg[0] = remainder

Unsigned compare reg[A] and reg[0],

Set long integer status

Test reg[A] AND reg[0],

Set long integer status

reg[A] = long(bb)

reg[A] = reg[A] + long(bb)

reg[A] = reg[A] - long(bb)

reg[A] = reg[A] * long(bb)

reg[A] = reg[A] / long(bb)

reg[0] = remainder

Signed compare reg[A] - long(bb),

Set long integer status

reg[A] = reg[A] / unsigned long(bb)

reg[0] = remainder

Unsigned compare reg[A] and long(bb),

Set long integer status

Test reg[A] AND long(bb),

Set long integer status

Set long integer status for reg[nn]

Set long integer status for reg[A]

Micromega Corporation 66 uM-FPU V3.1 Instruction Set

Micromega Corporation 67 uM-FPU V3.1 Instruction Set

Micromega Corporation 68 uM-FPU V3.1 Instruction Set

LCMP2

LUCMP2

LNEG

LABS

LINC

LDEC

LNOT

LAND

LOR

LXOR

LSHIFT

LMIN

LMAX

LONGBYTE

LONGUBYTE

LONGWORD

LONGUWORD

SETSTATUS

SEROUT

SERIN

SETOUT

ADCMODE

ADCTRIG

ADCSCALE

ADCLONG

ADCLOAD

ADCWAIT

TIMESET

TIMELONG

TICKLONG

EESAVE

EESAVEA

EELOAD

EELOADA

EEWRITE

EXTSET

EXTLONG

EXTWAIT

STRSET

STRSEL

STRINS

STRCMP

STRFIND

STRFCHR

STRFIELD

B9

BA

BB

BC

BD

BE

BF

C0

C1

C2

C3

C4

C5

C6

C7

C8

C9

CD

CE

CF

D0

D1

D2

D3

D4

D5

D6

D7

D8

D9

DA

DB

DC

DD

DE

E0

E1

E2

E3

E4

E5

E6

E7

E8

E9

nn,mm

nn,mm

nn

nn

nn

nn

nn

nn

nn

nn

bb

bb

b1,b2

b1,b2

ss

bb

bb,bd

bb,aa…00

bb

bb

bb

ch

ch

ch

nn,ee

ee

nn,ee

ee

ee,bc,b1…bn

aa…00

bb,bb

aa…00

aa…00

aa…00

aa…00

bb

Signed long compare reg[nn], reg[mm]

Set long integer status

Unsigned long compare reg[nn], reg[mm]

Set long integer status

reg[A] = -reg[A]

reg[A] = | reg[A] |

reg[nn] = reg[nn] + 1, set status

reg[nn] = reg[nn] - 1, set status

reg[A] = NOT reg[A]

reg[A] = reg[A] AND reg[nn]

reg[A] = reg[A] OR reg[nn]

reg[A] = reg[A] XOR reg[nn]

reg[A] = reg[A] shift reg[nn]

reg[A] = min(reg[A], reg[nn])

reg[A] = max(reg[A], reg[nn])

reg[0] = long(signed byte bb)

reg[0] = long(unsigned byte bb)

reg[0] = long(signed b1*256 + b2)

reg[0] = long(unsigned b1*256 + b2)

Set status byte

Serial output

Serial input

Set OUT1 and OUT2 output pins

Set A/D trigger mode

A/D manual trigger

ADCscale[ch] = reg[0]

reg[0] = ADCvalue[ch]

reg[0] =

float(ADCvalue[ch]) * ADCscale[ch]

wait for next A/D sample

time = reg[0]

reg[0] = time (long integer)

reg[0] = ticks (long integer)

EEPROM[ee] = reg[nn]

EEPROM[ee] = reg[A]

reg[nn] = EEPROM[ee]

reg[A] = EEPROM[ee]

Store bytes starting at EEPROM[ee]

external input count = reg[0]

reg[0] = external input counter

wait for next external input

Copy string to string buffer

Set selection point

Insert string at selection point

Compare string with string selection

Find string

Set field separators

Find field

Micromega Corporation 67 uM-FPU V3.1 Instruction Set

Micromega Corporation 68 uM-FPU V3.1 Instruction Set

Notes:
Opcode Opcode value in hexadecimal

Arguments Additional data required by instruction

Returns Data returned by instruction

nn register number (0-127)

mm register number (0-127)

fn function number (0-63)

bb 8-bit value

b1,b2 16-bit value (b1 is MSB)

b1,b2,b3,b4 32-bit value (b1 is MSB)

b1…bn string of 8-bit bytes

ss Status byte

bd baud rate and debug mode

cc Condition code

ee EEPROM address slot (0-255)

ch A/D channel number

bc Byte count

tc 32-bit value count

t1…tn String of 32-bit values

aa…00 Zero terminated ASCII string

STRTOF

STRTOL

READSEL

STRBYTE

STRINC

STRDEC

SYNC

READSTATUS

READSTR

VERSION

IEEEMODE

PICMODE

CHECKSUM

BREAK

TRACEOFF

TRACEON

TRACESTR

TRACEREG

READVAR

RESET

EA

EB

EC

ED

EE

EF

F0

F1

F2

F3

F4

F5

F6

F7

F8

F9

FA

FB

FC

FF

bb

aa…00

nn

bb

aa…00

5C

ss

aa…00

Convert string selection to floating point

Convert string selection to long integer

Read string selection

Insert byte at selection point

Increment string selection point

Decrement string selection point

Get synchronization byte

Read status byte

Read string from string buffer

Copy version string to string buffer

Set IEEE mode (default)

Set PIC mode

Calculate checksum for uM-FPU code

Debug breakpoint

Turn debug trace off

Turn debug trace on

Send string to debug trace buffer

Send register value to trace buffer

Read internal register value

Reset (9 consecutive FF bytes cause a

reset, otherwise it is a NOP)

