
Micromega Corporation 1 Revised 2014-08-12

Using uM-FPU64
with Parallax Propeller

Introduction
This document describes how to use the uM-FPU64 floating point coprocessor (FPU) with the Parallax Propeller
microcontroller. For a full description of the uM-FPU64 chip, please refer to the uM-FPU64 Datasheet and uM-
FPU64 Instruction Reference. Application notes are also available on the Micromega website.

The uM-FPU64 provides advanced fixed point and floating point math capabilities, that can be used to augment the
capabilities of the Propeller microcontroller. Many GPS navigational calculations and data transformation for
MEMS-based sensors require 64-bit precision to achieve the desired amount of accuracy. The uM-FPU64
coprocessor supports both 32-bit and 64-bit floating point numbers which provides the added precision needed for
these demanding applications, and can free up the resources of the Propeller microcontroller for other tasks.

The original Propeller object for uM-FPU64 was developed by Istvan Kovesdi and is published in the Math section
of the Parallax Propeller Object Exchange, along with numerous application examples. A new object,
Fpu64Driver.Spin, has been developed to minimize transfer times and significantly improve execution times. It’s
compatible with the uM-FPU64 IDE (Integrated Development Environment) which makes it easy to create, debug
and test code for the uM-FPU64. Code written for the IDE’s compiler or assembler can be compiled to generate Spin
code targeted for the Propellor microcontroller, or FPU functions stored in FPU Flash memory. The IDE provides
support for editing code, compiling, tracing code execution, setting breakpoints, examining registers and
programming user-defined functions in Flash memory.

The features of the new Fpu64Driver.Spin object include:
• SPI routines use COG counters to transmit data at 10 MHz.
• Spin call overhead is kept to a minimum.
• all FPU timing specifications are optimized
• Spin setup time for the next call is overlapped with the execution time of the current call.
• Spin code, Cog code and uM-FPU64 code can all run simultaneously, taking advantage of the

multiple processors.

Micromega Corporation 2 Using uM-FPU64 with Parallax Propeller

uM-FPU64 Floating Point Coprocessor Features

64-bit and 32-bit Floating Point
A comprehensive set of 64-bit and 32-bit floating point
operations are provided. See the uM-FPU64 datasheet
for details.

64-bit and 32-bit Integer
A comprehensive set of 64-bit and 32-bit integer
operations are provided. See the uM-FPU64 datasheet
for details.

Local Device Support
Local peripheral device support includes: RAM, 1-
Wire, I2C, SPI, UART, counter, servo controller, LCD,
and SD card FAT16/FAT32 devices. The uM-FPU64
can act as a complete subsystem controller for GPS,
sensor networks, robotic subsystems, IMUs, and other
applications. Local devices are assigned to digital I/O
pins at run-time, and controlled with the DEVIO
instruction.

User-defined Functions
User-defined functions can be stored in Flash memory.
Flash functions are programmed through the SERIN/
SEROUT pins using the uM-FPU64 IDE. A high level
language is supported, including control statements and
conditional execution.

Matrix Operations
A matrix can be defined as any set of sequential
registers. The MOP instruction provides scalar
operations, element-wise operations, matrix multiply,
inverse, determinant, count, sum, average, min, max,
copy and set operations.

FFT Instruction
Provides support for Fast Fourier Transforms. Used as a
single instruction for data sets that fit in the available
registers, or as a multi-pass instruction for working with
larger data sets.

Serial Input / Output
When not required for debugging, the SERIN and
SEROUT pins can be used for serial I/O. A second
asynchronous serial port, with hardware flow control, is
available as a local device using the DEVIO instruction.

NMEA Sentence Parsing
The serial input can be set to scan for valid NMEA
sentences with optional checksum. Multiple sentences
can be buffered for further processing.

String Handling
String instructions are provided to insert and append
substrings, search for fields and substrings, convert
from floating point or long integer to a substring, or
convert from a substring to floating point or long
integer. For example, the string instructions could be
used to parse a GPS NMEA sentence, or format
multiple numbers in an output string.

Table Lookup Instructions
Instructions are provided to load 32-bit values from a
table or find the index of a floating point or long integer
table entry that matches a specified condition.

A/D Conversion
Multiple 12-bit A/D channels are provided (six on 28-
pin device, nine on 44-pin device). The A/D conversion
can be triggered manually, through an external input, or
from a built-in timer. The A/D values can be read as
raw values or automatically scaled to a floating point
value. Data rates of up to 10,000 samples per second
are supported.

Real-Time Clock and Timers
A built-in real-time clock is provided, for scheduling
events or creating date/time stamps. Timers can be used
to trigger the A/D conversion, or to track elapsed time.

Foreground/Background Processing
Event driven foreground/background processing can be
used to provide independent monitoring of local
peripherals. The microcontroller communicates with the
foreground, while background processes can be used to
monitor local device activity.

Low Power Modes
When the uM-FPU64 chip is not busy it automatically
enters a power saving mode. It can also be configured
to enter a sleep mode which turns the device off while
preserving register contents. In sleep mode the uM-
FPU64 chip consumes negligible power.

Firmware Upgrades
When updates become available, the uM-FPU64
firmware can be upgraded in the field using the uM-
FPU64 IDE software.

Micromega Corporation 3 Using uM-FPU64 with Parallax Propeller

Installing uM-FPU64 Support Software for Propeller
The support software for using the uM-FPU64 chip with the Parallax Propeller microcontroller is contained in a file
called uM-FPU64-Propeller.zip. Download and unzip the file. Two Spin files, Fpu64Driver.spin and
Fpu64_Opcodes.spin provide the uM-FPU64 interface. Some sample code files and this document are also included.

The Fpu64Driver.spin object provides all of the support methods for interfacing to the uM-FPU64 chip.

The Fpu64_Opcodes.spin object provides symbol definitions for all uM-FPU64 opcodes, and additional symbols for
some of the action codes and options required by various FPU instructions.

Connecting the uM-FPU64 chip the Propeller
The uM-FPU64 is powered at 3.3V, and is connected to Propeller using an SPI interface. The pins used on
the Propeller to interface with the FPU are as follows:

SCLKpin SPI clock (connects to FPU SCLK pin)
MISOpin SPI master in, slave out (connects to FPU SOUT pin)
MOSIpin SPI master out, slave in (connects to FPU SIN pin)

Any available Propeller pins can be used for the interface, changing the definitions for SCLKpin,
MISOpin, and MOSIpin.

The SPI connection can be 2-wire, 3-wire, or an SPI bus as shown below.

Connecting the uM-FPU64 to the Propeller

uM-FPU64
PDIP-28
SOIC-28

1
2
3
4
5
6
7
8
9

10
11
12
13
14

28
27
26
25
24
23
22

20
19
18
17
16
15

21

AVDD
AVSS

SEROUT
D4/RTC

VCAP
VSS

D2
D3

SOUT/SDA
SIN/SCL

SCLK
SS

D1
D0

MCLR
AN0/VREF+
AN1/VREF-
D5/AN2
D6/AN3
D7/AN4
D8/AN5
VSS
SEL
BUSY
RTC OSC1
RTC OSC2
VDD
SERIN

3.3V

3.3V

4.7 - 10 uF

PC serial in
(uM-FPU64 IDE)

0.1 uF

0.1 uF

PC serial out
(uM-FPU64 IDE)

10K

SPI
Connection
(see below)

10K

Micromega Corporation 4 Using uM-FPU64 with Parallax Propeller

SPI Connection

17
16
15

SOUT/SDA
SIN/SCL

SCLK
SS

17
16
15

SOUT/SDA
SIN/SCL

SCLK
SS

17
16
15

SOUT/SDA
SIN/SCL

SCLK
SS

2-wire SPI (Single FPU)

3-wire SPI (Single FPU)

MOSIpin / MISOpin

uM-FPU64

uM-FPU64

uM-FPU64

GND

MOSIpin
MISOpin

SCLKpin

SCLKpin

GND

MOSIpin
MISOpin

SCLKpin
CS pin (one for each FPU)

3-wire SPI (Multiple FPU)

Propeller

Propeller

Propeller

Propeller Quickstart Board connected to uM-FPU64 Breakout board

Micromega Corporation 5 Using uM-FPU64 with Parallax Propeller

Sample Program
The Sample.spin program is provides a simple example of using the FPU64_Driver object. It can be also be
used as a template for developing your own programs. The example demonstrates the use the source code
linkage feature in the uM-FPU64 IDE software to update the FPU code in the Spin program.

The uM-FPU64 code is contained in the file sample.fp4.

Running the Sample Program
Compiling the FPU code

• run the uM-FPU64 IDE program
• open the file sample.fp4
• press the Compile button

Micromega Corporation 6 Using uM-FPU64 with Parallax Propeller

Update the FPU code in the Spin file

• select the Output tab
• press the Update Target File button
• an open file dialog will be displayed
• select the Sample.spin file and press the Open button
• the links are updated
• a dialog box displays the number of links successfully updated
• a timestamp is added to the linked code

Micromega Corporation 7 Using uM-FPU64 with Parallax Propeller

Run Sample.Spin

• run the Propeller Tool and open Sample.spin
• run the program

An example of the output on the Parallax Serial Terminal is as follows:

Sample routine for FPU64_Driver
Reset
Sync: 5C
Version: uM-FPU64 r411b5

Sample

diameterCm: 25
diameterIn: 9.84252
circumference: 30.92119
area: 76.0856

Done.

Micromega Corporation 8 Using uM-FPU64 with Parallax Propeller

Fpu64_Driver Methods
The Fpu64_Driver object provides the following methods for using the uM-FPU64 chip with the Propeller
microcontroller.

Setup and Special Purpose Methods
Start(SCLKpin, MOSIpin, MISOpin)

Must be called at the start of the main program to allocate the COG used for the FPU driver, assign the pins
used to interface with the uM-FPU64 chip, and configure the SPI interface. It must be called before any
other Fpu methods are called. The Propeller pins used to interface with the FPU chip are as follows:

SCLKpin SPI clock (connects to FPU SCLK pin)
MISOpin SPI master in, slave out (connects to FPU SOUT pin)
MOSIpin SPI master out, slave in (connects to FPU SIN pin)

Stop
Called at the end of the main program to deallocate the COG used for the FPU driver.

Reset
This method must be called before any other FPU methods are used to initialize the FPU, and ensure
synchronizaion.

Sync
Confirms communication with the FPU. It returns F#SYNC_CHAR (0x5C) if successful.
e.g.

IF (FPU.Sync == F#_SYNC_CHAR)
 PST.Str(STRING("Sync character received"))

Wait
The uM-FPU64 chip has a 256 byte instruction buffer which allows it to process in parallel with the
Propeller. The Wait method will not return until the FPU instruction buffer is empty. This method is not
required for data transfers using the WriteData, writeCmd, readCmd methods because the FPU64_Driver
keeps track of the buffer size and handles waits automatically.

Break
Executes an FPU BREAK instruction. If the uM-FPU64 IDE is enabled, the BREAK stops FPU execution
and allows the user to check register and memory values, and the step through the FPU code.

Select(cs)
Used to implement chip select when multiple FPUs are interfaced.

Write Commands
WriteByte(b)

Writes the lower 8 bits of b to the FPU.

WriteWord(w)
Writes the lower 16 bits of w to the FPU as two bytes (MSB first).

WriteLong(m)
Writes the 32 bits of m to the FPU as four bytes (MSB first).

WriteStr(s)
Writes a string to the FPU.

WriteNByte(n, b, d)

Micromega Corporation 9 Using uM-FPU64 with Parallax Propeller

Writes n bytes starting at address b to the FPU. An optional delay (d) may be required between bytes to
avoid buffer overflow for large data transfers.

WriteNWord(n, w, d)
Writes n 16-bit words starting at address w to the FPU. An optional delay (d) may be required between
bytes to avoid buffer overflow for large data transfers.

WriteNLong(n, m, d)
Writes n 32-bit values starting at address m to the FPU. An optional delay (d) may be required between
bytes to avoid buffer overflow for large data transfers.

WriteData1(t, n1)

WriteData2(t, n1, n2)

WriteData3(t, n1, n2, n3)

WriteData4(t, n1, n2, n3, n4)

WriteData5(t, n1, n2, n3, n4, n5)

WriteData6(t, n1, n2, n3, n4, n5, n6)

WriteData7(t, n1, n2, n3, n4, n5, n6, n7)

WriteData8(t, n1, n2, n3, n4, n5, n6, n7, n8)

WriteData9(t, n1, n2, n3, n4, n5, n6, n7, n8, n9)

WriteData10(t, n1, n2, n3, n4, n5, n6, n7, n8, n9, n10)

WriteData11(t, n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11)

WriteData12(t, n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12)

WriteData13(t, n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13)

WriteData14(t, n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13, n14)
When transferring data to the FPU the overhead for each Spin call is much more significant than the actual
SPI transfer time. The WriteData methods allow for a mix of data types to be combined into a single call
which significantly reduces the Spin overhead compared with many separate calls. The uM-FPU64 IDE
software will automatically generate WriteData calls for compiled code. The type value t, contains aa series
of 2-bit values specifying the data type for n1 to n14. The value is right justified, with the rightmost 2-bit
field corresponding to the rightmost argument.

Bits Description
00 8-bit value
01 16-bit value
10 32-bit value
11 8-bit opcode value

e.g.
The following uM-FPU64 IDE compiler code:

val1 = val1 + val2 ** 3

would generate the following Propeller code:

Micromega Corporation 10 Using uM-FPU64 with Parallax Propeller

FPU.WriteData11(%11_00_11_11_00_11_00_11_00_11_11, {
} F#_SELECTA, val1, F#_LEFT, F#_FSET, val2, F#_FPOWI, 3, F#_FADD, val1, {
} F#_RIGHT, F#_FSET0)

WriteCmd(cmd)
Writes cmd command to the FPU.

WriteCmdByte(cmd, b1)

WriteCmdByte2(cmd, b1, b2)

WriteCmdByte3(cmd, b1, b2, b3)

WriteCmdByte4(cmd, b1, b2, b3, b4)
Writes cmd opcode to the FPU followed by data 8-bit bytes b1 through b4.

WriteCmdByteWord(cmd, b, w)
Writes cmd opcode to the FPU followed by 8-bit byte b, and 16-bit word w.

WriteCmdByte2Word(cmd, b1, b2, w)
Writes cmd opcode to the FPU followed by two 8-bit bytes b1, b2, and 16-bit word w.

WriteCmdByteLong(cmd, b, n)
Writes cmd opcode to the FPU followed by 8-bit bytes b and 32-bit value n.

WriteCmdWord(cmd, w)
Writes cmd opcode to the FPU followed by 16-bit word w.

WriteCmdLong(b, n)
Writes cmd opcode to the FPU followed by 32-bit value n.

WriteCmdStr(cmd, s)
Writes an opcode to the FPU followed by zero-terminated string s.

WriteCmdByteStr(cmd, b, s)
Writes a command to the FPU followed by 8-bit value b, and zero-terminated string s.

WriteCmdByte2Str(cmd, b1, b2, s)
Writes an opcode to the FPU followed by 8-bit bytes b1, b2, and zero-terminated string s.

Read Commands
ReadByte

Reads an 8-bit byte from the FPU and returns the result.

ReadWord
Reads an 16-bit word from the FPU and returns the result.

ReadLong
Reads an 32-bit value from the FPU and returns the result. ReadLong can be used to read both floating
point and long integer values.

ReadStr
Reads a zero-terminated string from the FPU and stores it in an internal buffer in the Propeller Hub. The
address of the string is returned.

Micromega Corporation 11 Using uM-FPU64 with Parallax Propeller

ReadNByte(n, m, d)
Reads n bytes from the FPU and stores them starting at address m. An optional delay (d) may be required
between bytes to avoid buffer overflow for large data transfers.

ReadNWord(n, m, d)
Reads n words from the FPU and stores them starting at address m. An optional delay (d) may be required
between bytes to avoid buffer overflow for large data transfers.

ReadNLong(n, m, d)
Reads n 32-bit values from the FPU and stores them starting them at address m. An optional delay (d) may
be required between bytes to avoid buffer overflow for large data transfers. ReadNLong can be used to read
both floating point and long integer values.

ReadCmdByte(cmd)
Writes cmd opcode to the FPU, then reads an 8-bit byte from the FPU and returns the result.

ReadCmdWord(cmd)
Writes cmd opcode to the FPU, then reads a 16-bit word from the FPU and returns the result.

ReadCmdLong(cmd)
Writes cmd opcode to the FPU, then reads a 32-bit value from the FPU and returns the result.
ReadCmdLong can be used to read both floating point and long integer values.

ReadCmd2Long(cmd, r)
Writes cmd opcode to the FPU followed by the 8-bit value r, then reads a 32-bit value from the FPU and
returns the result. ReadCmd2Long can be used to read both floating point and long integer values.

ReadCmdStr(cmd)
Writes cmd opcode to the FPU, then reads a zero-terminated string from the FPU and stores it in an internal
buffer in the Propeller Hub. The address of the string is returned.

ReadCmdByte3(cmd, b1, b2, b3)
Writes cmd opcode to the FPU followed by the three 8-bit values b1, b2, b3, then reads a 32-bit value from
the FPU and returns the result.

Spin-based 32-bit Arithmetic Operations
F32_Add(a, b)

result = a + b

F32_Sub(a, b)
result = a - b

F32_Mul(a, b)
result = a * b

F32_Div(a, b)
result = a / b

F32_Mod(a, b)
result = a MOD b

Micromega Corporation 12 Using uM-FPU64 with Parallax Propeller

F32_Abs(a)
result = | a |

F32_Neg(a)
result = -a

F32_Cmp(a, b, epsilon)
if | a-b | <= epsilon, result = 0
if a < b, result = -1
if a > b, result = 1

L32_To_F32(a)
result = float(a)

FloatToString(a, format)
result = address of a floating point string, with value a displayed according to the format specified.

Further Information
The following documents are also available:

uM-FPU64 Datasheet provides hardware details and specifications
uM-FPU64 Instruction Reference provides detailed descriptions of each instruction
uM-FPU Application Notes various application notes and examples

Check the Micromega website at www.micromegacorp.com for up-to-date information.

http://www.micromegacorp.com

	Introduction
	uM-FPU64 Floating Point Coprocessor Features
	Installing uM-FPU64 Support Software for Propeller
	Connecting the uM-FPU64 chip the Propeller
	Connecting the uM-FPU64 to the Propeller
	SPI Connection
	Propeller Quickstart Board connected to uM-FPU64 Breakout board
	[Sample Setup.jpg]

	Sample Program
	Running the Sample Program
	Compiling the FPU code
	Update the FPU code in the Spin file
	Run Sample.Spin

	Fpu64_Driver Methods
	Setup and Special Purpose Methods
	Start(SCLKpin, MOSIpin, MISOpin)
	Stop
	Reset
	Sync
	Wait
	Break
	Select(cs)

	Write Commands
	WriteByte(b)
	WriteWord(w)
	WriteLong(m)
	WriteStr(s)
	WriteNByte(n, b, d)
	WriteNWord(n, w, d)
	WriteNLong(n, m, d)
	WriteData1(t, n1)
	WriteData2(t, n1, n2)
	WriteData3(t, n1, n2, n3)
	WriteData4(t, n1, n2, n3, n4)
	WriteData5(t, n1, n2, n3, n4, n5)
	WriteData6(t, n1, n2, n3, n4, n5, n6)
	WriteData7(t, n1, n2, n3, n4, n5, n6, n7)
	WriteData8(t, n1, n2, n3, n4, n5, n6, n7, n8)
	WriteData9(t, n1, n2, n3, n4, n5, n6, n7, n8, n9)
	WriteData10(t, n1, n2, n3, n4, n5, n6, n7, n8, n9, n10)
	WriteData11(t, n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11)
	WriteData12(t, n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12)
	WriteData13(t, n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13)
	WriteData14(t, n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13, n14)
	WriteCmd(cmd)
	WriteCmdByte(cmd, b1)
	WriteCmdByte2(cmd, b1, b2)
	WriteCmdByte3(cmd, b1, b2, b3)
	WriteCmdByte4(cmd, b1, b2, b3, b4)
	WriteCmdByteWord(cmd, b, w)
	WriteCmdByte2Word(cmd, b1, b2, w)
	WriteCmdByteLong(cmd, b, n)
	WriteCmdWord(cmd, w)
	WriteCmdLong(b, n)
	WriteCmdStr(cmd, s)
	WriteCmdByteStr(cmd, b, s)
	WriteCmdByte2Str(cmd, b1, b2, s)

	Read Commands
	ReadByte
	ReadWord
	ReadLong
	ReadStr
	ReadNByte(n, m, d)
	ReadNWord(n, m, d)
	ReadNLong(n, m, d)
	ReadCmdByte(cmd)
	ReadCmdWord(cmd)
	ReadCmdLong(cmd)
	ReadCmd2Long(cmd, r)
	ReadCmdStr(cmd)
	ReadCmdByte3(cmd, b1, b2, b3)
	F32_Add(a, b)
	F32_Sub(a, b)
	F32_Mul(a, b)
	F32_Div(a, b)
	F32_Mod(a, b)
	F32_Abs(a)
	F32_Neg(a)
	F32_Cmp(a, b, epsilon)
	L32_To_F32(a)
	FloatToString(a, format)

	Spin-based 32-bit Arithmetic Operations
	Further Information

